0000000000294255
AUTHOR
Philipp Haselmayer
Herpes virus entry mediator synergizes with Toll-like receptor mediated neutrophil inflammatory responses
In microbial infections polymorphnuclear neutrophils (PMN) constitute a major part of the innate host defence, based upon their ability to rapidly accumulate in inflamed tissues and clear the site of infection from microbial pathogens by their potent effector mechanisms. The recently described transmembrane receptor herpes virus entry mediator (HVEM) is a member of the tumour necrosis factor receptor super family and is expressed on many haematopoietic cells, including T cells, B cells, natural killer cells, monocytes and PMN. Interaction of HVEM with the natural ligand LIGHT on T cells has a costimulatory effect, and increases the bactericidal activity of PMN. To further characterize the f…
A role for Toll-like receptor mediated signals in neutrophils in the pathogenesis of the anti-phospholipid syndrome.
The anti-phospholipid syndrome (APS) is characterized by recurrent thrombosis and occurrence of anti-phospholipid antibodies (aPL). aPL are necessary, but not sufficient for the clinical manifestations of APS. Growing evidence suggests a role of innate immune cells, in particular polymorphonuclear neutrophils (PMN) and Toll-like receptors (TLR) to be additionally involved. aPL activate endothelial cells and monocytes through a TLR4-dependent signalling pathway. Whether this is also relevant for PMN in a similar way is currently not known. To address this issue, we used purified PMN from healthy donors and stimulated them in the presence or absence of human monoclonal aPL and the TLR4 agonis…
Signaling pathways of the TREM-1- and TLR4-mediated neutrophil oxidative burst.
The triggering receptor expressed on myeloid cells 1 (TREM-1) is involved in the innate inflammatory response to microbial infections. Activation and expression of TREM-1 by polymorphonuclear neutrophils (PMN) occurs in concert with Toll-like receptors (TLR) such as TLR4 for bacterial lipopolysaccharide. However, it is currently unclear how this is mediated on a molecular level. Using pharmacological inhibitors and Western blot analysis we demonstrate that phosphatidyl inositide 3-kinase, phospholipase C and the mitogen-activated kinase p38MAPK are essential for the TREM-1- and TLR4-induced oxidative burst of human PMN. The activation of protein kinase B and extracellular signal-related kin…
Mechanisms of Synergy Between Toll-Like Receptor 4 and Triggering Receptor Expressed on Myeloid Cells-1 in Human Neutrophils
Abstract The triggering receptor expressed on myeloid cells 1 (TREM-1) is an important player in the innate inflammatory response to microbial infections. Activation and expression of TREM-1 by polymorphonuclear neutrophils (PMN) occurs in concert with Toll-like receptors (TLR) such as TLR4 for bacterial lipopolysaccharide. However, it is currently unclear how this is mediated on a molecular level. Using pharmacologic inhibitors and western blot analysis we demonstrate that phosphatidyl inositide 3-kinase, phospholipase C and the mitogen activated kinase p38 are essential for the TREM-1 and TLR4 mediated respiratory burst of human PMN. The down stream phosphorylation of protein kinase B and…
TREM-1 ligand expression on platelets enhances neutrophil activation
Abstract The triggering receptor expressed on myeloid cells 1 (TREM-1) plays an important role in the innate immune response related to severe infections and sepsis. Modulation of TREM-1–associated activation improves the outcome in rodent models for pneumonia and sepsis. However, the identity and occurrence of the natural TREM-1 ligands are so far unknown, impairing the further understanding of the biology of this receptor. Here, we report the presence of a ligand for TREM-1 on human platelets. Using a recombinant TREM-1 fusion protein, we demonstrate specific binding of TREM-1 to platelets. TREM-1–specific signals are required for the platelet-induced augmentation of polymorphonuclear leu…
Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses.
Activation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free (0.5 …