0000000000294298
AUTHOR
Dirk Stalleicken
Monitoring White Blood Cell Mitochondrial Aldehyde Dehydrogenase Activity: Implications for Nitrate Therapy in Humans
Recent animal data suggest that reduced lipoic acid (LA) prevents oxidative inhibition of the nitrate bioactivating enzyme, the mitochondrial aldehyde dehydrogenase (ALDH-2), and that pentaerythritol tetranitrate (PETN) does not induce nitrate tolerance because of its intrinsic antioxidative properties, thereby preserving ALDH-2 activity. We sought to determine whether ALDH-2 activity in circulating white blood cells (WBCs) can be used to monitor nitrate tolerance and whether LA can prevent nitroglycerin tachyphylaxis in humans. Eight healthy male volunteers received, in randomized order, a single dose of glyceryl trinitrate (GTN; 0.8 mg), PETN (80 mg), or GTN plus LA (600 mg) orally. GTN (…
Anti-oxidative effects in response to pentaerithrityl tetranitrate (PETN) treatment are mediated by heme oxygenase-1 and ferritin induction and prevent the development of nitrate tolerance and cross-tolerance in vivo
Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice
Abstract Background Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD+/-) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 1…
P105. New findings on vasodilator potency, tachyphylaxis, and bioavailability of organic nitrates reveal: The tolerance-devoid clinical action of pentaerithrityl tetranitrate (PETN) is produced by its metabolites PEdiN and PEmonoN
Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates.
Objective— Nitrate tolerance is likely attributable to an increased production of reactive oxygen species (ROS) leading to an inhibition of the mitochondrial aldehyde dehydrogenase (ALDH-2), representing the nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN) bioactivating enzyme, and to impaired nitric oxide bioactivity and signaling. We tested whether differences in their capacity to induce heme oxygenase-1 (HO-1) might explain why PETN and not GTN therapy is devoid of nitrate and cross-tolerance. Methods and Results— Wistar rats were treated with PETN or GTN (10.5 or 6.6 μg/kg/min for 4 days). In contrast to GTN, PETN did not induce nitrate tolerance or cross-tolerance as assess…
Efficacy of the long-acting nitro vasodilator pentaerithrityl tetranitrate in patients with chronic stable angina pectoris receiving anti-anginal background therapy with beta-blockers: a 12-week, randomized, double-blind, placebo-controlled trial.
Background The organic nitrate pentaerithrityl tetranitrate (PETN) has been shown to have ancillary properties that prevent the development of tolerance and endothelial dysfunction. This randomized, double-blind, placebo-controlled, multicentre study (‘CLEOPATRA’ study) was designed to investigate the anti-ischaemic efficacy of PETN 80 mg b.i.d. (morning and mid-day) over placebo in patients with chronic stable angina pectoris. Methods and results A total of 655 patients were evaluated in the intention-to-treat population, randomized to PETN (80 mg b.i.d., n = 328) or placebo ( n = 327) and completed the study. Patients underwent treadmill exercise tests at randomization, after 6 and 12 wee…