0000000000294318

AUTHOR

Ch. Mokry

First Study on Nihonium (Nh, Element 113) Chemistry at TASCA

Frontiers in Chemistry 9, 753738 (2021). doi:10.3389/fchem.2021.753738

research product

Rapid extraction of short-lived isotopes from a buffer gas cell for use in gas-phase chemistry experiments. Part I: Off-line studies with  219Rn and  221Fr

Abstract To study the chemical properties of the heaviest elements, a fast and efficient stopping and extraction of the highly energetic residues from heavy ion fusion reactions into the chemistry setup is essential. Currently used techniques like Recoil Transfer Chambers (RTC) relying on gas flow extraction provide high efficiencies for chemically non-reactive volatile species, but operate at extraction times t extr of about 0.5 s or more. Buffer Gas Cells (BGC) with electric and Radio-Frequency (RF) fields offer much faster extraction times. Here, we demonstrate the successful coupling of a BGC to a gas chromatography setup as is used for studies of chemical properties of superheavy eleme…

research product

On the adsorption and reactivity of element 114, flerovium

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly v…

research product

Radiochemical study of the kinematics of multi-nucleon transfer reactions in 48Ca + 248Cm collisions 10% above the Coulomb barrier

Abstract The kinematics of multi-nucleon transfer reactions in 48Ca + 248Cm collisions at 262 MeV (center of target) was investigated by using a stacked-foil technique and radiochemical separations of trans-curium elements. Trans-curium isotopes were identified by α-particle spectroscopy. For Fm isotopes, by comparing the centroids of the measured post-neutron emission isotope distributions with the most probable primary mass number predicted by Volkov's generalized Q g g systematics, the missing mass (number of evaporated neutrons) is estimated. The latter is compared with that deduced from the measured centroid of the laboratory angular distribution peaked closely to the grazing angle and…

research product