0000000000294513
AUTHOR
M. V. Ricciardi
Dispersion of longitudinal momentum distributions induced in fragmentation reactions
On the basis of systematic measurements of fragmentation reactions, which provide a detailed overview on the velocity distributions of residual nuclei, an improved description of the kinematical properties of the fragmentation residues is established. This work is dedicated to the fluctuations of their momentum distributions. In contrast to previous investigations, limited to close-to-projectile fragments, we extended our study to the entire production range, down to the lightest observed fragments. In this context, beside the contribution of abrasion and evaporation processes, we considered the effect of the thermal break-up on the width of the momentum distributions. Using approximated th…
Experimental study of fragmentation products in the reactions112Sn+112Snand124Sn+124Snat 1AGeV
Production cross sections and longitudinal velocity distributions of the projectilelike residues produced in the reactions ${}^{112}\text{Sn}+{}^{112}\text{Sn}$ and ${}^{124}\text{Sn}+{}^{124}\text{Sn}$, both at an incident beam energy of 1$A$ GeV, were measured with the high-resolution magnetic spectrometer, the Fragment Separator of GSI. For both reactions the characteristics of the velocity distributions and nuclide production cross sections were determined for residues with atomic number $Z\ensuremath{\ge}10$. A comparison of the results of the two reactions is presented.
Experiments on Fission Dynamics with Relativistic Heavy-ion Beams
[Abstract] At GSI, Darmstadt, an experimental program on fission with relativistic heavy-ion beams is in progress. A large range of excitation energies, combined with low angular momentum and small shape distortion is accessible. Full nuclide identification of the reaction residues is achieved by applying inverse kinematics. The nuclide production and the kinematics of fission fragments from a variety of primordial and radioactive projectiles reveal new insight into the influence of shell effects and dissipation on the fission process. The present contribution gives an overview on the experimental methods, the experimental results and the prospects for future progress.