0000000000294648

AUTHOR

Darya E. Apushkinskaya

Biharmonic obstacle problem: guaranteed and computable error bounds for approximate solutions

The paper is concerned with a free boundary problem generated by the biharmonic operator and an obstacle. The main goal is to deduce a fully guaranteed upper bound of the difference between the exact minimizer u and any function (approximation) from the corresponding energy class (which consists of the functions in $H^2$ satisfying the prescribed boundary conditions and the restrictions stipulated by the obstacle). For this purpose we use the duality method of the calculus of variations and general type error identities earlier derived for a wide class of convex variational problems. By this method, we define a combined primal--dual measure of error. It contains four terms of different natu…

research product

Thin obstacle problem : Estimates of the distance to the exact solution

We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., they are valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation c…

research product