0000000000294792

AUTHOR

Phaneendra K. Yalavarthy

0000-0003-4810-352x

Classification of Targets Using Statistical Features from Range FFT of mmWave FMCW Radars

Radars with mmWave frequency modulated continuous wave (FMCW) technology accurately estimate the range and velocity of targets in their field of view (FoV). The targeted angle of arrival (AoA) estimation can be improved by increasing receiving antennas or by using multiple-input multiple-output (MIMO). However, obtaining target features such as target type remains challenging. In this paper, we present a novel target classification method based on machine learning and features extracted from a range fast Fourier transform (FFT) profile by using mmWave FMCW radars operating in the frequency range of 77–81 GHz. The measurements are carried out in a variety of realistic situations, including p…

research product

Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images

In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by orienting the Radar antennas in elevation. In this orientation, the radar focuses the beam in elevation to improve the elevation FoV. The azimuth FoV is improved by mechanically rotating the Radar horizontally, which has antenna elements oriented in the elevation direction. The data from the Radar measurements obtained by mechanical rotation of the Radar in Azimuth are used to generate a range-angl…

research product

Mini-COVIDNet: Efficient Lightweight Deep Neural Network for Ultrasound Based Point-of-Care Detection of COVID-19

Lung ultrasound (US) imaging has the potential to be an effective point-of-care test for detection of COVID-19, due to its ease of operation with minimal personal protection equipment along with easy disinfection. The current state-of-the-art deep learning models for detection of COVID-19 are heavy models that may not be easy to deploy in commonly utilized mobile platforms in point-of-care testing. In this work, we develop a lightweight mobile friendly efficient deep learning model for detection of COVID-19 using lung US images. Three different classes including COVID-19, pneumonia, and healthy were included in this task. The developed network, named as Mini-COVIDNet, was bench-marked with …

research product

Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images.

Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually. We propose anamorphic depth embedding-based lightweight CNN, called Anam-Net, to segment anomalies in COVID-19 chest CT images. The proposed Anam-Net has 7.8 times fewer parameters …

research product

Robust Hand Gestures Recognition Using a Deep CNN and Thermal Images

Medical systems and assistive technologies, human-computer interaction, human-robot interaction, industrial automation, virtual environment control, sign language translation, crisis and disaster management, entertainment and computer games, and so on all use RGB cameras for hand gesture recognition. However, their performance is limited especially in low-light conditions. In this paper, we propose a robust hand gesture recognition system based on high-resolution thermal imaging that is light-independent. A dataset of 14,400 thermal hand gestures is constructed, separated into two color tones. We also propose using a deep CNN to classify high-resolution hand gestures accurately. The propose…

research product

Object Classification Technique for mmWave FMCW Radars using Range-FFT Features

In this article, we present a novel target classification technique by mmWave frequency modulated continuous wave (FMCW) Radars using the Machine Learning on raw data features obtained from range fast Fourier transform (FFT) plot. FFT plots are extracted from the measured raw data obtained with a Radar operating in the frequency range of 77- 81 GHz. The features such as peak, width, area, standard deviation, and range on range FFT plot peaks are extracted and fed to a machine learning model. Two light weight classification models such as Logistic Regression, Naive Bayes are explored to assess the performance. Based on the results, we demonstrate and achieve an accuracy of 86.9% using Logist…

research product

Design and Implementation of Deep Learning Based Contactless Authentication System Using Hand Gestures

Hand gestures based sign language digits have several contactless applications. Applications include communication for impaired people, such as elderly and disabled people, health-care applications, automotive user interfaces, and security and surveillance. This work presents the design and implementation of a complete end-to-end deep learning based edge computing system that can verify a user contactlessly using &lsquo

research product

Localization and Activity Classification of Unmanned Aerial Vehicle Using mmWave FMCW Radars

In this article, we present a novel localization and activity classification method for aerial vehicle using mmWave frequency modulated continuous wave (FMCW) Radar. The localization and activity classification for aerial vehicle enables the utilization of mmWave Radars in security surveillance and privacy monitoring applications. In the proposed method, Radar’s antennas are oriented vertically to measure the elevation angle of arrival of the aerial vehicle from ground station. The height of the aerial vehicle and horizontal distance of the aerial vehicle from Radar station on ground are estimated using the measured radial range and the elevation angle of arrival. The aerial vehicle’s activ…

research product

Deep Learning-Based Sign Language Digits Recognition From Thermal Images With Edge Computing System

The sign language digits based on hand gestures have been utilized in various applications such as human-computer interaction, robotics, health and medical systems, health assistive technologies, automotive user interfaces, crisis management and disaster relief, entertainment, and contactless communication in smart devices. The color and depth cameras are commonly deployed for hand gesture recognition, but the robust classification of hand gestures under varying illumination is still a challenging task. This work presents the design and deployment of a complete end-to-end edge computing system that can accurately provide the classification of hand gestures captured from thermal images. A th…

research product