0000000000294907

AUTHOR

L. Nataf

showing 6 related works from this author

Origin of Pressure-Induced Metallization in Cu 3 N: An X-ray Absorption Spectroscopy Study

2018

The authors are grateful to Professor Alain Polian for providing the NDAC cell.

X-ray absorption spectroscopyhigh-pressureMaterials scienceExtended X-ray absorption fine structureCu3NAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesXANESXANES0104 chemical sciencesElectronic Optical and Magnetic MaterialsEXAFSHigh pressureCu K-edge:NATURAL SCIENCES:Physics [Research Subject Categories]0210 nano-technologyphysica status solidi (b)
researchProduct

Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline

2020

I.J. and A.K. are grateful to the Latvian Council of Science project no. lzp-2018/2-0353 for financial support. The research leading to these results has been partially supported by the project CALIPSOplus under the Grant Agreement No. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Phase transitionMaterials scienceAbsorption spectroscopyFOS: Physical sciencesReverse Monte Carlo010502 geochemistry & geophysics01 natural sciencesDiamond anvil celllaw.inventionlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS]Physics [physics]X-ray absorption spectroscopyCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Condensed Matter PhysicsSynchrotronNanocrystalline materialXANESEXAFSHigh pressureBeamlinenano-polycrystalline diamond anvil cellAtomic physics
researchProduct

Structural Metastability and Quantum Confinement in Zn1–xCoxO Nanoparticles

2016

This paper investigates the electronic structure of wurtzite (W) and rock-salt (RS) Zn1-xCoxO nanoparticles (NPs) by means of optical measurements under pressure (up to 25 GPa), X-ray absorption, and transmission electron microscopy. W-NPs were chemically synthesized at ambient conditions and RS-NPs were obtained by pressure-induced transformation of W-NPs. In contrast to the abrupt phase transition in W-Zn1-xCoxO as thin film or single crystal, occurring sharply at about 9 GPa, spectroscopic signatures of tetrahedral Co(2+) are observed in NPs from ambient pressure to about 17 GPa. Above this pressure, several changes in the absorption spectrum reveal a gradual and irreversible W-to-RS pha…

Phase transitionCondensed matter physicsAbsorption spectroscopyChemistryMechanical EngineeringBioengineering02 engineering and technologyGeneral ChemistryElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAbsorption bandMetastability0103 physical sciencesGeneral Materials Science010306 general physics0210 nano-technologyAbsorption (electromagnetic radiation)Single crystalWurtzite crystal structureNano Letters
researchProduct

High-pressure x-ray absorption spectroscopy study of tin tungstates

2015

Room-temperature pressure-dependent (0-25 GPa) x-ray absorption spectroscopy at the W -edges of α-SnWO4 and β-SnWO4 was performed using a dispersive setup and a high-pressure nanodiamond anvil cell. The detailed analysis of experimental x-ray absorption near-edge structure and extended x-ray absorption fine structure data suggests that upon increasing pressure, a displacement of tungsten atoms by about 0.2 A toward the center of the WO6 octahedra occurs in α-SnWO4, whereas the coordination of tungsten atoms changes from tetrahedral to distorted octahedral in β-SnWO4.

X-ray absorption spectroscopyTungsten CompoundsX-ray spectroscopyMaterials scienceAbsorption spectroscopyAnalytical chemistrychemistry.chemical_elementTungstenCondensed Matter PhysicsAtomic and Molecular Physics and OpticschemistrySpectroscopyTinAbsorption (electromagnetic radiation)Mathematical PhysicsPhysica Scripta
researchProduct

Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO

2018

The authors are grateful to Prof. Alain Polian for providing NDAC cell. Parts of the present research have been carried out at the ODE beamline at SOLEIL.

Copper oxideMaterials sciencehigh-pressureQC1-999Analytical chemistryGeneral Physics and Astronomyradiolysis02 engineering and technologyx-ray absorption spectroscopy010402 general chemistry01 natural scienceschemistry.chemical_compound:NATURAL SCIENCES:Physics [Research Subject Categories]X-ray absorption spectroscopyPhysicsGeneral EngineeringOdeX-rayX-ray absorption spectroscopy021001 nanoscience & nanotechnologyNanocrystalline materialcopper oxide0104 chemical scienceschemistryBeamlineHigh pressureRadiolysisnanocrystalline0210 nano-technologyLatvian Journal of Physics and Technical Sciences
researchProduct

Effect of Pressure and Temperature on the Local Structure and Lattice Dynamics of Copper(II) Oxide

2016

Abstract Microcrystalline and nanocrystalline (6 nm) CuO were studied in situ by the Cu K-edge X-ray absorption spectroscopy as a function of pressure (0-20 GPa) and temperature (10-300 K). Pressure dependence of X-ray absorption near edge structure (XANES) was interpreted within the full-multiple-scattering formalism based on the relaxed atomic structure determined by ab initio linear combination of atomic orbital (LCAO) calculations. Temperature dependence of the mean-square relative displacement (MSRD) for the four shortest Cu–O distances was obtained from the analysis of extended X-ray absorption fine structure (EXAFS) and described by the correlated Einstein model with the characterist…

Materials scienceExtended X-ray absorption fine structureAbsorption spectroscopyAb initiochemistry.chemical_element02 engineering and technologyPhysics and Astronomy(all)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsCopperXANES0104 chemical sciencesCopper(II) oxideCondensed Matter::Materials Sciencechemistry.chemical_compoundAtomic orbitalchemistryLinear combination of atomic orbitals0210 nano-technologyPhysics Procedia
researchProduct