0000000000295236

AUTHOR

Ian Mayer

Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

AbstractComparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic sa…

research product

Neuroendocrine indicators of allostatic load reveal the impact of environmental acidification in fish

Abstract When mobilized from surrounding soils and binding to gills at moderately low pH, aluminum (Al) cations can adversely affect fish populations. Furthermore, acidification may lead to allostatic overload, a situation in which the costs of coping with chronic stress affects long-term survival and reproductive output and, ultimately, ecosystem health. The brain's serotonergic system plays a key role in neuroendocrine stress responses and allostatic processes. Here, we explored whether sublethal effects of Al in acidified water affects serotonergic neurochemistry and stress coping ability in a unique land-locked salmon population from Lake Bygelandsfjorden, in southern Norway. Fish were …

research product