0000000000296639
AUTHOR
Lobna Azaza
Influence Assessment in Twitter Multi-relational Network
International audience; Influence in Twitter has become recently a hot research topic since this micro-blogging service is widely used to share and disseminate information. Some users are more able than others to influence and persuade peers. Thus, studying most influential users leads to reach a large-scale information diffusion area, something very useful in marketing or political campaigns. In this paper, we propose a new approach for influence assessment on Twitter network, it is based on a modified version of the conjunctive combination rule in belief functions theory in order to combine different influence markers such as retweets, mentions and replies. We experiment the proposed meth…
Modèle de réseaux multiplexe pour l'étude de l'influence sur Twitter.
International audience
Évaluation de l’influence dans un réseau multi-relationnel : le cas de Twitter
International audience
An approach for influence estimatation in complex networks : application to the social network Twitter
Influence in complex networks and in particular Twitter has become recently a hot research topic. Detecting most influential users leads to reach a large-scale information diffusion area at low cost, something very useful in marketing or political campaigns. In this thesis, we propose a new approach that considers the several relations between users in order to assess influence in complex networks such as Twitter. We model Twitter as a multiplex heterogeneous network where users, tweets and objects are represented by nodes, and links model the different relations between them (e.g., retweets, mentions, and replies).The multiplex PageRank is applied to data from two datasets in the political…
Évaluation de l’influence polarisée dans un réseau multi-relationnel : application à twitter
International audience
Evaluation de l’influence sur Twitter: Application au projet « Twitter aux Elections Européennes 2014 »
International audience
Évaluation de l’influence dans un réseau multi-relationnel
L'influence sur Twitter est devenue un sujet de recherche important. Certains utilisateurs révèlent plus de capacité que d'autres pour influencer les personnes avec lesquelles ils sont connectés. Ainsi, trouver les utilisateurs les plus influents peut permettre une diffusion efficace de l'information à grande échelle, action très utile dans le marketing ou les campagnes politiques. Dans cet article, nous proposons une nouvelle approche pour l'évaluation de l'influence dans les réseaux multi-relationnels tels que Twitter. Notre méthode est basée sur la règle de combinaison conjonctive de la théorie des fonctions de croyance qui permet de fusionner différents types de relations. Nous expérime…