0000000000296839

AUTHOR

Laurent Brilland

Fourth order cascaded Raman shift in As38Se62 chalcogenide suspended core fiber pumped at 1.995 μm

Fourth order cascaded Raman wavelength shift is demonstrated in As 38 Se 62 suspended core fiber using 1995 nm nanosecond source. The measured Raman gain coefficient is∼2×10−11 m/W at 1995 nm. The Raman peaks are reproduced by numerical simulations.

research product

Microstructured Optical Fibers from As2S3 Glass for Fiber Optics Sources in the MIR range

International audience

research product

Recent developments in chalcogenide photonic crystal fibres

Elaboration of low-losses highly non linear chalcogenide optical fibers for the generation of efficient non linear effects in the infrared remains a challenge. In recent years, much work has been devoted to the study of microstructured optical fibers (MOFs) with different designs and various elaboration processes. Their background losses were typically of several dB/m.

research product

Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm

International audience; The aim of this work is to study different compositions in the Ga-Ge-Sb-S system for the definition of two compositions compatible with the elaboration of a single-mode fiber at the 1.55 μm telecom wavelength. The variations of the glass transition temperature (Tg), the dilatation coefficient (α) and the refractive index (n) have been studied for two glasses series: GaxGe25−xSb10S65 (series 1), Ga5Ge25−xSb10S60+x (series 2). This study has lead to the choice of the Ga4Ge21Sb10S65 composition as clad glass for the preparation of the single-mode fiber and Ga5Ge20Sb10S65 composition as the core. The discrepancies for the studied parameters between the core and clad comp…

research product

Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration, Modelization, and Characterization

special issue " Fiber Optic Research in France " (Part III of III); International audience; Chalcogenide fibers present numerous possible applications in the IR field. For many applications, single mode fibers must be obtained. An original way is the realization of microstructured optical fibers (MOFs) with solid core. These fibers present a broad range of optical properties thanks to the high number of freedom degrees of their geometrical structure. In this context, we have developed MOFs for near and mid IR transmission with different geometries and properties such as multimode or endless single-mode operation, small or large mode area fibers. We have also investigated numerically the mai…

research product

Elaboration by casting method of low losses chalcogenide microstructured fibers for near and mid infrared applications

oral session C " Preparation and Property ", oral [TuA-16]; International audience

research product

Nonlinear Characterisation of an AsSe Chalcogenide Holey Fiber

oral session TuA " Highly Nonlinear Fibers " [TuA1]; International audience; We report the nonlinear characterization of a chalcogenide holey fiber, based on the AsSe glass composition. A nonlinear coefficient as high as 15 000 W-1 km-1 has been measured.

research product

Fiber-based optical functions for high-bit-rate transmissions

oral

research product

Nonlinear effects above 2 µm in chalcogenide suspended core microstructured optical fibers: modeling and experiments

International audience

research product

Caractérisation d'une fibre optique ultra non-linéaire en verre de chalcogénure

session orale 3 « Effets nonlinéaires » [Ma1.4], http://optiquelille2009.univ-lille1.fr/; National audience; Nous présentons les résultats expérimentaux concernant la caractérisation d'une fibre optique microstructurée en verre de chalcogénure de composition AsSe. Ces mesures concernent l'atténuation, la dispersion, l'aire effective et le coefficient non-linéaire du troisième ordre. Cette fibre présente un fort potentiel pour des applications non-linéaires avec un coefficient non-linéaire Kerr de 15 400 W-1m-1.

research product

Small-core chalcogenide microstructured fibers for the infrared.

International audience; We report several small-core chalcogenide microstructured fibers fabricated by the "Stack & Draw" technique from Ge(15)Sb(20)S(65) glass with regular profiles. Mode field diameters and losses have been measured at 1.55 microm. For one of the presented fibers, the pitch is 2.5 microm, three times smaller than that already obtained in our previous work, and the corresponding mode field diameter is now as small as 3.5 microm. This fiber, obtained using a two step "Stack & Draw" technique, is single-mode at 1.55 microm from a practical point of view. We also report the first measurement of the attenuation between 1 and 3.5 microm of a chalcogenide microstructured fiber. …

research product

Recent advances in the development of chalcogenide photonic crystal fibers.

International audience

research product

Nonlinear effects above 2 µm in chalcogenide suspended core microstructured optical fibers: Modeling and experiments

We present our latest results on the linear and nonlinear modeling, and on the fabrication of chalcogenide suspended core microstructured optical fibers for mid-infrared generation. We focus on an AsSe glass composition. We have used a thulium-doped fiber laser to pump our fibers around 2 µm. In order to enhance further the nonlinearities and to manage the chromatic dispersion for supercontinuum application, we have tapered some of our microstructured optical fibers.

research product

Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber

We report on the generation of a supercontinuum in a chalcogenide microstructured tapered fiber. The suspended core diameter of the fiber is reduced from 5.5 μm to 0.8 μm in the waist of the tapered region. The zero dispersion wavelength is below 2 μm in the tapered region. To pump the fiber, we use a modelocked laser of 4 ps, with a central wavelength of 1960 nm. With only 150 W peak power in the fiber a supercontinuum is generated from 1300 to 2600 nm taking the supercontinuum wavelength edge at -30 dB from the continuum.

research product

Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers

Made available in DSpace on 2013-08-28T14:10:10Z (GMT). No. of bitstreams: 1 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) Made available in DSpace on 2013-09-30T19:22:36Z (GMT). No. of bitstreams: 2 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) WOS000275454100017.pdf.txt: 34647 bytes, checksum: b4efba760b21442eba43e7096f213b3e (MD5) Previous issue date: 2010-03-01 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:33:52Z No. of bitstreams: 2 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) WOS000275454100017.pdf.txt: 34647 bytes, ch…

research product

Chalcogenide glass hollow core photonic crystal fibers

International audience; We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from Te20As30Se50 (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the ot…

research product

Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm

International audience; Microstructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various As(38)Se(62) chalcogenide microstructured fibers have been prepared in order to combine large non linear index of these glasses with the mode control offered by MOF structures. Small core fibers have been drawn to enhance the non linearities. In one of these, three Stokes order have been generated by Ram…

research product

Elaboration and characterizations of solid core and holow core microstructured chalcogenide fibers

Symposium 25 " Glasses for Optoelectronic and Optical Applications ", Session " Glass Fibers " [PACRIM8-S25-039-2009]; International audience

research product

Photonic crystal fibers from chalcogenide glasses for the mid infrared

International audience

research product

Casting process for manufacturing a low loss chalcogenide photonic crystal fiber

International audience

research product

Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm

International audience; Cascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450nm is demonstrated using a nanosecond pump at 1995nm in a low-loss As38Se62 suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11W, and only 3W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.6 +-0.5)x 10e−11 m/W at 1995nm. The positions and the amplitudes of the Raman peaks are well reproduced by the numerical simulations of the nonlinear propagation.

research product

Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber.

International audience; In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.

research product

Recent advances in chalcogenide holey fibres

oral

research product

Chalcogenide Photonic Crystal Fibers for Near and Middle Infrared Applications

Chalcogenide glasses are based on sulphur, selenium, tellurium and the addition of other elements such as arsenic, germanium, antimony, gallium, etc. Chalcogenide fibers present numerous applications in the IR field, such as telecommunication at 1.55 mum, spectroscopy and military systems in the two atmospherics windows (3-5 mum and 8-12 mum). One of the interests of chalcogenide glasses is to associate high non linear properties with their Infrared transmission from 0.51 mum to 12-18 mum depending on the composition. Indeed, chalcogenide glasses present high third order optical properties, 100 - 1000 times as high as the non linearity of silica glass at 1.55 mum. For many applications, sin…

research product

Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers

International audience; The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.

research product

Te-As-Se glass microstructured optical fiber for the middle infrared

International audience; We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 μm, in good agreement with experimental near-field captures at 9.3 μm. The second fiber is not monomode between 3.39 and 9.3 μm, but the fundamental losses are 9 dB/m at 3:39 μm and 6 dB/m at 9.3 μm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.

research product

Chalcogenide microstructured optical fibers : from linear to nonlinear properties

International audience; In this talk, we review the linear properties of chalcogenide microstructured optical fibers (MOFs) of several types. We mainly focus our talk on mid-infrared applications of such fibers. We start with the general properties of solid core MOFs made of these high index glasses and compare them with the ones of silica. Then, we give some details concerning a solid core MOF made of TAS glass. Next, we describe the first guiding suspended chalcogenide MOF and explain how it was designed for supercontinuum generation in the mid-infrared. Both linear and nonlinear properties of As2S3 suspended core MOFs are also numerically studied. In the next part, We describe the design…

research product

Suspended core tellurite glass optical fibers for infrared supercontinuum generation

International audience; We report the fabrication and characterization of tellurite TeO(2)-ZnO-Na(2)O (TZN) microstructured suspended core optical fibers (MOFs). These fibers are designed for infrared supercontinuum generation with zero dispersion wavelength (ZDW) at 1.451 mu m. The measured losses at this wavelength are approximately 6 dB/m for a MOF with a 2.2 mu m diameter core. The effective area of a particular fiber is 3.5 mu m(2) and the nonlinear coefficient is calculated to be 437 W(-1)km(-1). By pumping a 20 cm long fiber at 1.56 mu m with a sub-nj femtosecond laser source, we generate a supercontinuum (SC) spanning over 800 nm in the 1-2 mu m wavelength range.

research product

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

Made available in DSpace on 2013-08-28T14:12:29Z (GMT). No. of bitstreams: 1 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) Made available in DSpace on 2013-09-30T19:22:53Z (GMT). No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes, checksum: 1ca2ac713bf6024674249abf58520bcb (MD5) Previous issue date: 2010-12-06 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:34:00Z No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes,…

research product