6533b836fe1ef96bd12a08f0
RESEARCH PRODUCT
Chalcogenide glass hollow core photonic crystal fibers
Quentin CoulombierFrédéric DésévédavyNicholas TraynorGilles RenversezIon VasiliefJohann TrolesJean-luc AdamLaurent BrillandPatrick HouizotFrédéric Smektalasubject
Microstructured optical fibersOptical fiberMaterials scienceChalcogenide glassPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsInorganic ChemistryOpticslawLattice (order)0103 physical sciencesBand diagramHexagonal latticeElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyPhotonic crystalbusiness.industryPhotonic bandgapOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPhotonic crystal fibersHollow coreFiber optic sensor[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogenide glassOptoelectronics0210 nano-technologybusinessInfraredPhotonic-crystal fiberdescription
International audience; We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from Te20As30Se50 (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.
year | journal | country | edition | language |
---|---|---|---|---|
2010-09-01 |