0000000000297014
AUTHOR
Jhonatan Rodriguez-pereira
The role of surface chemical states on the photocatalytic behavior of all-inorganic mixed halide perovskite nanocrystals
Enabling long-term stable FAPb1-xSrxI3 quantum dots with high optical performance: the effect of Sr2+ doping
Engineering Sr-doping for enabling long-term stable FAPb1xSrxI3 quantum dots with 100% photoluminescence quantum yield
The Pb substitution in quantum dots (PQDs) with lesser toxic metals has been widely searched to be environmentally friendly, and be of comparable or improved performance compared to the lead-perovskite. However, the chemical nature of the lead substitute influences the incorporation mechanism into PQDs, which has not been explored in depth. In this work, we analyzed Sr-doping-induced changes in FAPbI3 perovskites by studying the optical, structural properties and chemical environment of FAPb1−xSrxI3 PQDs. The substitution of Pb by 7 at% Sr allows us to achieve FAPb1−xSrxI3 PQDs with 100% PLQY, high stability for 8 months under a relative humidity of 40–50%, and T80 = 6.5 m…
Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States
Within the most mesmerizing materials in the world of optoelectronics, mixed halide perovskites (MHPs) have been distinguished because of the tunability of their optoelectronic properties, balancing both the light-harvesting efficiency and the charge extraction into highly efficient solar devices. This feature has drawn the attention of analogous hot topics as photocatalysis for carrying out more efficiently the degradation of organic compounds. However, the photo-oxidation ability of perovskite depends not only on its excellent light-harvesting properties but also on the surface chemical environment provided during its synthesis. Accordingly, we studied the role of surface chemical states …