0000000000297226

AUTHOR

Siavash Mollaebrahim

Designing Precoding and Receive Matrices for Interference Alignment in MIMO Interference Channels

Interference is a key bottleneck in wireless communication systems. Interference alignment is a management technique that align interference from other transmitters in the least possibly dimension subspace at each receiver and provides the remaining dimensions for free interference signal. An uncoordinated interference is an example of interference which cannot be aligned coordinately with interference from coordinated part; consequently, the performance of interference alignment approaches are degraded. In this paper, we propose a rank minimization method to enhance the performance of interference alignment in the presence of uncoordinated interference sources. Firstly, to obtain higher mu…

research product

Fast Decentralized Linear Functions Over Edge Fluctuating Graphs

Implementing linear transformations is a key task in the decentralized signal processing framework, which performs learning tasks on data sets distributed over multi-node networks. That kind of network can be represented by a graph. Recently, some decentralized methods have been proposed to compute linear transformations by leveraging the notion of graph shift operator, which captures the local structure of the graph. However, existing approaches have some drawbacks such as considering some special instances of linear transformations, or reducing the family of transformations by assuming that a shift matrix is given such that a subset of its eigenvectors spans the subspace of interest. In c…

research product

Design of Asymmetric Shift Operators for Efficient Decentralized Subspace Projection

A large number of applications in decentralized signal processing includes projecting a vector of noisy observations onto a subspace dictated by prior information about the field being monitored. Accomplishing such a task in a centralized fashion in networks is prone to a number of issues such as large power consumption, congestion at certain nodes and suffers from robustness issues against possible node failures. Decentralized subspace projection is an alternative method to address those issues. Recently, it has been shown that graph filters (GFs) can be implemented to perform decentralized subspace projection. However, most of the existing methods have focused on designing GFs for symmetr…

research product

Fast Decentralized Linear Functions via Successive Graph Shift Operators

Decentralized signal processing performs learning tasks on data distributed over a multi-node network which can be represented by a graph. Implementing linear transformations emerges as a key task in a number of applications of decentralized signal processing. Recently, some decentralized methods have been proposed to accomplish that task by leveraging the notion of graph shift operator, which captures the local structure of the graph. However, existing approaches have some drawbacks such as considering special instances of linear transformations, or reducing the family of transformations by assuming that a shift matrix is given such that a subset of its eigenvectors spans the subspace of i…

research product

Designing Asymmetric Shift Operators for Decentralized Subspace Projection

A large number of applications in wireless sensor networks include projecting a vector of noisy observations onto a subspace dictated by prior information about the field being monitored. In general, accomplishing such a task in a centralized fashion, entails a large power consumption, congestion at certain nodes, and suffers from robustness issues against possible node failures. Computing such projections in a decentralized fashion is an alternative solution that solves these issues. Recent works have shown that this task can be done via the so-called graph filters where only local inter-node communication is performed in a distributed manner using a graph shift operator. Existing methods …

research product

Decentralized Subspace Projection for Asymmetric Sensor Networks

A large number of applications in Wireless Sensor Networks include projecting a vector of noisy observations onto a subspace dictated by prior information about the field being monitored. In general, accomplishing such a task in a centralized fashion, entails a large power consumption, congestion at certain nodes and suffers from robustness issues against possible node failures. Computing such projections in a decentralized fashion is an alternative solution that solves these issues. Recent works have shown that this task can be done via the so-called graph filters where only local inter-node communication is performed in a distributed manner using a graph shift operator. Most of the existi…

research product

DECENTRALIZED SUBSPACE PROJECTION IN LARGE NETWORKS

A great number of applications in wireless sensor networks involve projecting a vector of observations onto a subspace dictated by prior information. Accomplishing such a task in a centralized fashion entails great power consumption, congestion at certain nodes, and suffers from robustness issues. A sensible alternative is to compute such projections in a decentralized fashion. To this end, recent works proposed schemes based on graph filters, which compute projections exactly with a finite number of local exchanges among sensor nodes. However, existing methods to obtain these filters are confined to reduced families of projection matrices or small networks. This paper proposes a method tha…

research product

Fast Graph Filters for Decentralized Subspace Projection

A number of inference problems with sensor networks involve projecting a measured signal onto a given subspace. In existing decentralized approaches, sensors communicate with their local neighbors to obtain a sequence of iterates that asymptotically converges to the desired projection. In contrast, the present paper develops methods that produce these projections in a finite and approximately minimal number of iterations. Building upon tools from graph signal processing, the problem is cast as the design of a graph filter which, in turn, is reduced to the design of a suitable graph shift operator. Exploiting the eigenstructure of the projection and shift matrices leads to an objective whose…

research product