0000000000297465

AUTHOR

Rainer Erbes

Conservative swept volume boundary approximation

We present a novel technique for approximating the boundary of a swept volume. The generator given by an input triangle mesh is rendered under all rigid transformations of a discrete trajectory. We use a special shader program that creates offset geometry of each triangle on the fly, thus guaranteeing a conservative rasterization and correct depth values. Utilizing rasterization mechanisms and the depth buffer we then get a conservative voxelization of the swept volume (SV) and can extract a triangle mesh from its surface. This mesh is simplified maintaining conservativeness as well as an error bound measured in terms of the one-sided Hausdorff distance. For this we introduce a new techniqu…

research product

Parallel Collision Queries on the GPU

We present parallel algorithms to accelerate collision tests of rigid body objects for a high number of independent transformations as they occur in sampling-based motion planning and path validation problems. We compare various GPU approaches with a different level of parallelism against each other and against a parallel CPU implementation. Our algorithms require no sophisticated load balancing schemes. They make no assumption on the distribution of the input transformations and require no pre-processing. Yet, we can perform up to 1 million collision tests per second with our best GPU implementation in our benchmarks. This is about 2.5X faster than our reference multi-core CPU implementati…

research product

The Role of Wind Speed and Wind Shear for Banner Cloud Formation

Abstract Banner clouds are clouds that appear to be attached to the leeward face of a steep mountain. This paper investigates the role of wind speed and wind shear for the formation of banner clouds. Large-eddy simulations are performed to simulate the flow of dry air past an idealized pyramid-shaped mountain. The potential for cloud formation is diagnosed through the Lagrangian vertical parcel displacement, which in the case of a banner cloud shows a plume of large values in the lee of the mountain. In addition, vortical structures are visualized through streamlines and their curvature. A series of sensitivity experiments indicates that both the flow and the banner cloud occurrence are lar…

research product