0000000000297606

AUTHOR

Matthias Bock

Hub-Centered Gene Network Reconstruction Using Automatic Relevance Determination

Network inference deals with the reconstruction of biological networks from experimental data. A variety of different reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the node degree, number of edges, or constraints on regulation functions between network components. We propose to exploit topological considerations in the inference of gene regulatory networks. Such systems are often…

research product

Identification of ELF3 as an early transcriptional regulator of human urothelium

AbstractDespite major advances in high-throughput and computational modelling techniques, understanding of the mechanisms regulating tissue specification and differentiation in higher eukaryotes, particularly man, remains limited. Microarray technology has been explored exhaustively in recent years and several standard approaches have been established to analyse the resultant datasets on a genome-wide scale. Gene expression time series offer a valuable opportunity to define temporal hierarchies and gain insight into the regulatory relationships of biological processes. However, unless datasets are exactly synchronous, time points cannot be compared directly.Here we present a data-driven ana…

research product