0000000000297670

AUTHOR

Patrick Steinegger

showing 5 related works from this author

Complex chemistry with complex compounds

2016

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO)6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of re…

PhysicsQC1-999Transactinide elementchemistry.chemical_elementTungsten010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences0104 chemical sciencesMetalchemistryGroup (periodic table)Computational chemistryMolybdenumChemical physicsvisual_artIntramolecular forceSeaborgium540 ChemistryAtomvisual_art.visual_art_medium570 Life sciences; biologyEPJ Web of Conferences
researchProduct

Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6

2015

Abstract Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By in…

Inorganic chemistryMetal carbonyl02 engineering and technology010402 general chemistry01 natural sciences7. Clean energythermal stability540 ChemistryseaborgiumThermal stabilityNuclideGas compositionPhysical and Theoretical Chemistrycarbonyl complexegroup 6ChemistrytransactinideTransition metals021001 nanoscience & nanotechnologyDecompositionBond-dissociation energy0104 chemical sciencesVolumetric flow rateYield (chemistry)570 Life sciences; biologyPhysical chemistry0210 nano-technology
researchProduct

Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266

2014

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…

Nuclear physicsPhysicsIsotopeAtomic nucleusGeneral Physics and AstronomyNuclear fusionDecay chainAtomic numberAtomic physicsRadioactive decayRecoil separatorSpontaneous fissionPhysical Review Letters
researchProduct

Search for elements 119 and 120

2020

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

Physicselement 119010308 nuclear & particles physicselement 120Superheavy Elements01 natural sciencesIsland of stabilityRecoil separatorNuclear physicssuperheavy elementsProduction cross sectionSubatomic Physics0103 physical sciences540 Chemistry570 Life sciences; biologylow and intermediate energy heavy-ion reactionsAtomic numberIrradiationSensitivity (control systems)ydinfysiikka010306 general physicsBeam energyPhysical Review C
researchProduct

Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )

2019

The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…

PhysicsNuclear physicsNuclear TheoryNuclear fusionDecay chainAlpha decayActinideSuperheavy ElementsNuclear ExperimentRecoil separatorPhysical Review C
researchProduct