0000000000298281

AUTHOR

Andrea Cellini

showing 3 related works from this author

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

X-ray laserPrimary (chemistry)Materials sciencePhytochromebusiness.industryFemtosecondOptoelectronicsbusiness
researchProduct

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

2021

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

MECHANISMMaterials scienceAbsorption spectroscopyDNA repairfotobiologia02 engineering and technologyCrystal structureREPAIR ACTIVITY03 medical and health sciencesCOLI DNA PHOTOLYASEX-RAY-DIFFRACTIONCryptochromeStructural BiologyAnimalsserial crystallographyCRYSTAL-STRUCTURECRYPTOCHROMEPhotolyaseSERIAL FEMTOSECOND CRYSTALLOGRAPHY030304 developmental biology0303 health sciencesCrystallographyflavoproteinsFADResolution (electron density)TemperaturebanaanikärpänenDNAkidetiede(6-4) photolyase021001 nanoscience & nanotechnologyResearch PapersRADICAL TRANSFER(6–4) photolyaseroom-temperature structureCrystallographyphotolyasesDrosophila melanogasterRECONSTITUTIONX-ray crystallography1182 Biochemistry cell and molecular biologylämpötilaproteiinit0210 nano-technologyDeoxyribodipyrimidine Photo-LyasePHOTOACTIVATIONVisible spectrumActa Crystallographica Section D Structural Biology
researchProduct