0000000000298947

AUTHOR

Szabolcs Mészáros

showing 5 related works from this author

The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition

2019

(Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary…

[PHYS]Physics [physics]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of Galaxies[PHYS] Physics [physics][SDU] Sciences of the Universe [physics][SDU]Sciences of the Universe [physics]Astrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Second APOKASC Catalog: The Empirical Approach

2018

We present a catalog of stellar properties for a large sample of 6676 evolved stars with APOGEE spectroscopic parameters and \textit{Kepler} asteroseismic data analyzed using five independent techniques. Our data includes evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed b…

Stellar populationoscillations (including pulsations) [stars]fundamental parameters [stars]KEPLERFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesOSCILLATIONSAstrophysics::Solar and Stellar AstrophysicsStatistical dispersionstars abundancesFIELD010303 astronomy & astrophysicsRed clumpScalingComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsMIXING-LENGTH010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusSurface gravityAGESRED GIANTSStarsStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceOPEN CLUSTERSAstrophysics::Earth and Planetary AstrophysicsBOLOMETRIC CORRECTIONS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSASTEROSEISMIC MASS
researchProduct

APOGEE Data Releases 13 and 14: Data and Analysis

2018

Data and analysis methodology used for the SDSS/APOGEE Data Releases 13 and 14 are described, highlighting differences from the DR12 analysis presented in Holtzman (2015). Some improvement in the handling of telluric absorption and persistence is demonstrated. The derivation and calibration of stellar parameters, chemical abundances, and respective uncertainties are described, along with the ranges over which calibration was performed. Some known issues with the public data related to the calibration of the effective temperatures (DR13), surface gravity (DR13 and DR14), and C and N abundances for dwarfs (DR13 and DR14) are highlighted. We discuss how results from a data-driven technique, Th…

010308 nuclear & particles physicsLibrary scienceFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesAstrophysics - Astrophysics of GalaxiesAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)0103 physical sciencesNational laboratoryAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ComputingMilieux_MISCELLANEOUSSolar and Stellar Astrophysics (astro-ph.SR)Mathematics
researchProduct

Chemical Cartography with APOGEE: Multi-element Abundance Ratios

2019

We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance |Z|= 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] vs. [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the lo…

stars: abundances010504 meteorology & atmospheric sciencesMilky WayMetallicityPopulationFOS: Physical sciences01 natural sciencesGalaxy: diskStellar nucleosynthesisNucleosynthesis0103 physical scienceseducation010303 astronomy & astrophysicsnuclear reactions0105 earth and related environmental sciencesPhysicseducation.field_of_studyabundancesnucleosynthesisAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxySupernova13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesSupernova nucleosynthesis[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CartographyThe Astrophysical Journal
researchProduct

APOGEE Data Releases 13 and 14: Stellar Parameter and Abundance Comparisons with Independent Analyses

2018

Data from the SDSS-IV / Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have been released as part of SDSS Data Releases 13 (DR13) and 14 (DR14). These include high resolution H-band spectra, radial velocities, and derived stellar parameters and abundances. DR13, released in August 2016, contained APOGEE data for roughly 150,000 stars, and DR14, released in August 2017, added about 110,000 more. Stellar parameters and abundances have been derived with an automated pipeline, the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). We evaluate the performance of this pipeline by comparing the derived stellar parameters and abundances to those inferred from opti…

Physics010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of Galaxies01 natural sciencesStandard deviationSpectral lineOptical spectraStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceObservatoryAbundance (ecology)Astrophysics of Galaxies (astro-ph.GA)0103 physical sciencesThick disk[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUS
researchProduct