0000000000299255

AUTHOR

Manuela Pensini

Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes.

The aim of this study was to compare the mechanical and electromyographic (EMG) characteristics of soleus motor units activated during maximal H reflex and direct M response among subjects with different histories of physical activity. Power-trained athletes produced stronger twitches, with a higher rate of twitch tension buildup and relaxation, than their endurance counterparts for both maximal H-reflex and maximal M-wave responses. The maximal H-reflex-to-maximal M-wave ratios for both force output (twitch) and EMG wave amplitude were significantly lower in power-trained than endurance-trained athletes. However, power-trained athletes exhibited a significantly greater twitch-to-EMG ratio…

research product

Central Versus Peripheral Adaptations Following Eccentric Resistance Training

Aim of the present investigation was to study the effects of an eccentric training on the neuromuscular properties of the plantar-flexor muscles. The experiment was carried out on 14 males divided into two groups (eccentric and control). Eccentric training consisted of six sets of six eccentric contractions at 120 % of one maximal concentric repetition and it was performed four times a week during four weeks. Before and after the 4-wk period, the plantar-flexor torque and the associated electromyographic activity were recorded during voluntary contractions (isometric, concentric and eccentric) and electrically induced contractions (twitch and tetanus), in order to distinguish central from p…

research product

Activation of human plantar flexor muscles increases after electromyostimulation training

Neuromuscular adaptations of the plantar flexor muscles were assessed before and subsequent to short-term electromyostimulation (EMS) training. Eight subjects underwent 16 sessions of isometric EMS training over 4 wk. Surface electromyographic (EMG) activity and torque obtained under maximal voluntary and electrically evoked contractions were analyzed to distinguish neural adaptations from contractile changes. After training, plantar flexor voluntary torque significantly increased under isometric conditions at the training angle (+8.1%, P< 0.05) and at the two eccentric velocities considered (+10.8 and +13.1%, P < 0.05). Torque gains were accompanied by higher normalized soleus EMG a…

research product

Effect of electromyostimulation training on soleus and gastrocnemii H- and T-reflex properties.

When muscle is artificially activated, as with electromyostimulation (EMS), action potentials are evoked in both intramuscular nerve branches and cutaneous receptors, therefore activating spinal motoneurons reflexively. Maximal soleus and gastrocnemii H- and T-reflex and the respective mechanical output were thus quantified to examine possible neural adaptations induced at the spinal level by EMS resistance training. Eight subjects completed 16 sessions of isometric EMS (75 Hz) over a 4-week period. Maximal soleus and gastrocnemii M wave (M(max)), H reflex (H(max)) and T reflex (T(max)) were compared between before and after training, together with the corresponding plantar flexor peak twit…

research product