0000000000299344

AUTHOR

Thomas Bürgi

showing 4 related works from this author

Size Exclusion Chromatography for Semipreparative Scale Separation of Au 38 (SR) 24 and Au 40 (SR) 24 and Larger Clusters

2011

Size exclusion chromatography (SEC) on a semipreparative scale (10 mg and more) was used to size-select ultrasmall gold nanoclusters (2 nm) from polydisperse mixtures. In particular, the ubiquitous byproducts of the etching process toward Au(38)(SR)(24) (SR, thiolate) clusters were separated and gained in high monodispersity (based on mass spectrometry). The isolated fractions were characterized by UV-vis spectroscopy, MALDI mass spectrometry, HPLC, and electron microscopy. Most notably, the separation of Au(38)(SR)(24) and Au(40)(SR)(24) clusters is demonstrated.

ChromatographyChemistrySize-exclusion chromatographyAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyMass spectrometry01 natural sciencesHigh-performance liquid chromatography0104 chemical sciencesAnalytical ChemistryNanoclusterslaw.inventionGel permeation chromatographyMatrix-assisted laser desorption/ionizationlawddc:540Electron microscope0210 nano-technologySpectroscopy
researchProduct

Vibrational Circular Dichroism of Thiolate-Protected Au25 Clusters: Accurate Prediction of Spectra and Chirality Transfer within the Mixed Ligand She…

2019

We have prepared Au25(PET)18-2x((R)-FBI-NAS)x(PET = 2-phenylethylthiol, (R)-FBINAS = (R)-5,5',6,6',7,7',8,8'-octafluoro-[1,1'-binaphthalene]-2,2'-dithiol) mixed ligand shell clusters via ligand exchange. Two fractions with different composition of the ligand shell were separated using size-exclusion chromatography and studied by infrared (IR) spectroscopy and vibrational circular dichroism (VCD). Both IR and VCD spectra are dominated by FBINAS vibrations although PET is more abundant on the cluster. Calculated VCD spectra on a model cluster Au25(SH)16(FBINAS)1 depend on the charge state of the cluster, and the anion is in excellent agreement with the experimental spectra of the Au25(PET)18-…

ChemistryLigandShell (structure)02 engineering and technologyMixed ligand010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral line3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral EnergyVibrational circular dichroismddc:540Physical and Theoretical Chemistry0210 nano-technologyChirality (chemistry)
researchProduct

Au-40(SR)(24) Cluster as a Chiral Dimer of 8-Electron Superatoms: Structure and Optical Properties

2012

We predict and analyze density-functional theory (DFT)-based structures for the recently isolated Au(40)(SR)(24) cluster. Combining structural information extracted from ligand-exchange reactions, circular dichroism and transmission electron microscopy leads us to propose two families of low-energy structures that have a chiral Au-S framework on the surface. These families have a common geometrical motif where a nonchiral Au(26) bi-icosahedral cluster core is protected by 6 RS-Au-SR and 4 RS-Au-SR-Au-SR oligomeric units, analogously to the "Divide and Protect" motif of known clusters Au(25)(SR)(18)(-/0), Au(38)(SR)(24) and Au(102)(SR)(44). The strongly prolate shape of the proposed Au(26) c…

Models MolecularCircular dichroismIcosahedral symmetryDimerShell (structure)Electrons02 engineering and technologyElectronElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryCluster (physics)ta114ChemistryCircular DichroismStereoisomerismGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyTransmission electron microscopyddc:540Quantum Theory0210 nano-technologyDimerizationOrganogold CompoundsJournal of the American Chemical Society
researchProduct

Pd2Au36(SR)(24) cluster: structure studies

2015

The location of the Pd atoms in Pd2Au36(SC2H4Ph)(24), is studied both experimentally and theoretically. X-ray photoelectron spectroscopy (XPS) indicates oxidized Pd atoms. Palladium K-edge extended X-ray absorption fine-structure (EXAFS) data clearly show Pd-S bonds, which is supported by far infrared spectroscopy and by comparing theoretical EXAFS spectra in R space and circular dichroism spectra of the staple, surface and core doped structures with experimental spectra.

spectroscopyAtomsElectronic-propertiesnanoclustersMass-spectrometrychemistry.chemical_elementNanotechnologyCrystal structureSpectral lineÀtomsCondensed Matter::Materials ScienceX-ray photoelectron spectroscopyOptical-propertiesCondensed Matter::SuperconductivityRay-absorption spectroscopyCluster (physics):Física::Electromagnetisme [Àrees temàtiques de la UPC]General Materials ScienceGold nanoclustersta116Theoretical-analysista114Extended X-ray absorption fine structureDopingProtected au-25 nanoclustersEspectroscòpia de raigs XCrystallographyLigand-exchangechemistryCrystal-structureddc:540X-ray spectroscopyNanoparticles:Física::Física molecular [Àrees temàtiques de la UPC]Absorption (chemistry)Palladium
researchProduct