0000000000299369
AUTHOR
J. Castelo
Testbeam studies of production modules of the ATLAS Tile Calorimeter
We report test beam studies of {11\,\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\sim 70$~pe/GeV, exceeding the design goal by {40\,\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\,\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the respo…
Algorithms for the ROD DSP of the ATLAS Hadronic Tile Calorimeter
In this paper we present the performance of two algorithms currently running in the Tile Calorimeter Read-Out Driver boards for the commissioning of ATLAS. The first algorithm presented is the so called Optimal Filtering. It reconstructs the deposited energy in the Tile Calorimeter and the arrival time of the data. The second algorithm is the MTag which tags low transverse momentum muons that may escape the ATLAS muon spectrometer first level trigger. Comparisons between online (inside the Read-Out Drivers) and offline implementations are done with an agreement around 99% for the reconstruction of the amplitude using the Optimal Filtering algorithm and a coincidende of 93% between the offli…
The ATLAS hadronic tile calorimeter: From construction toward-physics
ATLAS; The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its unifo…
Development of the optical multiplexer board prototype for data acquisition in TileCal experiment
The optical multiplexer board is one of the elements present in the read out chain of the tile calorimeter in ATLAS experiment. Due to radiation effects, two optical fibers with the same data come out from the front end boards to this board, which has to decide in real time which one carries good data and pass them to the read out driver motherboard for processing. This paper describes the design and tests of the first prototype, implemented as a 6U VME64x slave module, including both hardware and firmware aspects. In this last, algorithms for cyclic redundancy code checking are used to make the decision. Besides, the board may be used as a data injector for testing purposes of the read out…
Development of the Optical Multiplexer Board Prototype for Data Acquisition in the TileCal System
This paper describes the development of the optical multiplexer board (OMB), also known as PreROD board, for the TileCal readout system in the ATLAS experiment. The aim of this board is to overcome the problems that may arise in the integrity of data due to radiation effects. The solution adopted has been to add redundancy to data transmission and so two optical fibers with the same data come out from the detector front end boards. The OMB has to decide in real time which fiber, eventually, carries data with no errors switching it to the output link connected to the read out driver (ROD) motherboard where data processing takes place. Besides, the board may be also used as a data injector fo…
Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter
The response of pions and protons in the energy range of 20–180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron–scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-indu…