0000000000299371

AUTHOR

D. Burckhart-chromek

Testbeam studies of production modules of the ATLAS Tile Calorimeter

We report test beam studies of {11\,\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\sim 70$~pe/GeV, exceeding the design goal by {40\,\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\,\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the respo…

research product

Event reconstruction algorithms for the ATLAS trigger

The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a centerof- mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 109 interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection…

research product

Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

The response of pions and protons in the energy range of 20–180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron–scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-indu…

research product