0000000000299903
AUTHOR
Hervé Sentenac
Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels
International audience; The Avabidopsis thaliana K+ channel AKT1 was expressed in a yeast strain defective for K+ uptake at low K+ concentrations (<3 mM). Besides restoring K+ transport in this strain, AKT1 expression increased its tolerance to salt (NaCl or LiCl), whatever the external K+ concentration used (50 mu M, 5 mM, or 50 mM), We took advantage of the latter phenomenon for screening a library of channels randomly mutated in the region that shares homologies with the pore forming domain (the so-called P domain) of animal K+ channels (Shaker family). Cassette mutagenesis was performed using a degenerate oligonucleotide that was designed to ensure, theoretically, a single mutation per …
Recherche de systèmes de transport de potassium impliqués dans le transfert de K+ de la mycorhize arbusculaire au riz lors d'interactions symbiotiques
Les champignons mycorhiziens à arbuscules (CMA) développent des connexions interdépendantes avec les racines d'environ 90% des espèces végétales. Ces interactions augmentent la disponibilité ainsi que la translocation des nutriments (en particulier N et P), et améliorent ainsi la nutrition et la croissance des plantes. De plus, la résistance à une variété de stress, parmi lesquels le stress salin, s'est avérée améliorée par les interactions CMA-plante, par exemple chez le riz. Des recherches intenses pour expliquer les mécanismes moléculaires des interactions bénéfiques CMA-plante ont conduit à l'identification de transporteurs de phosphate et d'ammonium impliqués dans les échanges de nutri…
Cluster organization and pore structure of ion channels formed by beticolin 3, a nonpeptidic fungal toxin
Beticolin 3 (B3) belongs to a family of nonpeptidic phytotoxins produced by the fungus Cercospora beticola, which present a broad spectrum of cytotoxic effects. We report here that, at cytotoxic concentration (10 microM), B3 formed voltage-independent, weakly selective ion channels with multiple conductance levels in planar lipid bilayers. In symmetrical standard solutions, conductance values of the first levels were, respectively, 16 +/- 1 pS, 32 +/- 2 pS, and 57 +/- 2 pS (n = 4) and so on, any conductance level being roughly twice the lower one. Whether a cluster organization of elementary channels or different channel structures underlies this particular property was addressed by investi…
Search for potassium transport systems involved in arbuscular mycorrhiza-rice symbiotic interactions
Arbuscular mycorrhizal fungi (AMF) develop interdependent connections with roots of about90% of plant species. These interactions increase availability as well as translocation ofnutrients (especially N and P), and thereby improve plant nutrition and growth. Moreover,resistance to a variety of stresses, among which salt stress, has been shown to be improved byAMF-plant interactions, for example in rice. Intense research to explain the molecularmechanisms of AMF-plant beneficial interactions led to the identification of phosphate andammonium transporters involved in nutrient exchanges from AMF to the plant, in several plantspecies. In spite of the importance of potassium (K+) for plant physi…
Magnesium ions promote assembly of channel-like structures from beticolin 0, a non-peptide fungal toxin purified from Cercospora beticola.
Beticolins are toxins produced by the fungus Cercospora beticola. Using beticolin 0 (B0), we have produced a strong and Mg(2+)-dependent increase in the membrane conductance of Arabidopsis protoplasts and Xenopus oocytes. In protein-free artificial bilayers, discrete deflexions of current were observed (12 pS unitary conductance in symmetrical 100 mM KCl) in the presence of B0 (approximately 10 microM) and in the presence of nominal Mg2+. Addition of 50 microM Mg2+ induced a macroscopic current which could be reversed to single channel current by chelating Mg2+ with EDTA. Both unitary and macroscopic currents were ohmic. The increase in conductance of biological membranes triggered by B0 is…