Continuous-Variable Instantaneous Quantum Computing is Hard to Sample
Instantaneous quantum computing is a sub-universal quantum complexity class, whose circuits have proven to be hard to simulate classically in the Discrete-Variable (DV) realm. We extend this proof to the Continuous-Variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of post-selected circuits. In order to treat post-selection in CVs we consider finitely-resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator GKP encoding of quantum information,…