0000000000300103

AUTHOR

Anne-laure Egesipe

showing 2 related works from this author

Metformin decreases progerin expression and alleviates pathological defects of Hutchinson–Gilford progeria syndrome cells

2016

Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder that causes systemic accelerated aging in children. This syndrome is due to a mutation in the LMNA gene that leads to the production of a truncated and toxic form of lamin A called progerin. Because the balance between the A-type lamins is controlled by the RNA-binding protein SRSF1, we have hypothesized that its inhibition may have therapeutic effects for HGPS. For this purpose, we evaluated the antidiabetic drug metformin and demonstrated that 48 h treatment with 5 mmol/l metformin decreases SRSF1 and progerin expression in mesenchymal stem cells derived from HGPS induced pluripotent stem cells (HGPS MSCs). The effect …

0301 basic medicinePremature agingcongenital hereditary and neonatal diseases and abnormalitiesAgingArticleLMNA03 medical and health sciencesProgeria0302 clinical medicinemedicineInduced pluripotent stem cellProgeriaintegumentary systembusiness.industryGenetic disordernutritional and metabolic diseasesmedicine.diseaseProgerinMetformin030104 developmental biology030220 oncology & carcinogenesisCancer researchGeriatrics and GerontologybusinessLaminmedicine.drugnpj Aging and Mechanisms of Disease
researchProduct

A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem ce…

2016

AbstractHutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process an…

0301 basic medicineCell typecongenital hereditary and neonatal diseases and abnormalitiesPhenotypic screeningInduced Pluripotent Stem CellsRetinoic acidTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundProgeriaOsteogenesis[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]medicineHumansInduced pluripotent stem cellChildIsotretinoinGeneticsProgeriaMultidisciplinaryintegumentary systemGuided Tissue RegenerationMesenchymal stem cellnutritional and metabolic diseasesAging PrematureCell DifferentiationMesenchymal Stem Cellsmedicine.diseaseProgerinAlkaline PhosphataseLamin Type A3. Good healthCell biologyHigh-Throughput Screening Assays030104 developmental biologychemistryGene Expression Regulation[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Alkaline phosphataseScientific Reports
researchProduct