0000000000300130

AUTHOR

Joseph A. Berry

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF…

research product

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

Guanter, Luis et al.

research product

Radiance-based NIRv as a proxy for GPP of corn and soybean

Abstract Substantial uncertainty exists in daily and sub-daily gross primary production (GPP) estimation, which dampens accurate monitoring of the global carbon cycle. Here we find that near-infrared radiance of vegetation (NIRv,Rad), defined as the product of observed NIR radiance and normalized difference vegetation index, can accurately estimate corn and soybean GPP at daily and half-hourly time scales, benchmarked with multi-year tower-based GPP at three sites with different environmental and irrigation conditions. Overall, NIRv,Rad explains 84% and 78% variations of half-hourly GPP for corn and soybean, respectively, outperforming NIR reflectance of vegetation (NIRv,Ref), enhanced vege…

research product

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

research product

Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production

Guanter, Luis et al.

research product

Sensitivity of scope modelled GPP and fluorescence for different plant functional types

This study addresses the question which factors are responsible for reported positive correlations between solar induced fluorescence (SIF) and gross primary production (GPP). A sensitivity analysis of the model SCOPE, which simulates photosynthesis, fluorescence emission and radiative transfer in canopies, has been carried out for four different plant functional types (PFT): tropical rainforest, C4 crops, C3 crops, and tundra, located in distinct climate zones: tropical everwet (Af), tropical with seasonal drought (savannah, Aw), temperate (Cf), and continental tundra (Dfd). Literature values for structural and physiological parameters and climate reanalysis data were used as input. The ef…

research product