0000000000300248
AUTHOR
Arnold Von Eckardstein
Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement
Genome sequencing and gene-based therapies appear poised to advance the management of rare lipoprotein disorders and associated dyslipidaemias. However, in practice, underdiagnosis and undertreatment of these disorders are common, in large part due to interindividual variability in the genetic causes and phenotypic presentation of these conditions. To address these challenges, the European Atherosclerosis Society formed a task force to provide practical clinical guidance focusing on patients with extreme concentrations (either low or high) of plasma low-density lipoprotein cholesterol, triglycerides, or high-density lipoprotein cholesterol. The task force also recognises the scarcity of qua…
Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional…
Anti-inflammatory Function of High-Density Lipoproteins via Autophagy of IκB Kinase
Background & Aims: Plasma levels of high-density lipoprotein (HDL) cholesterol are frequently found decreased in patients with inflammatory bowel disease (IBD). Therefore, and because HDL exerts anti-inflammatory activities, we investigated whether HDL and its major protein component apolipoprotein A-I (apoA-I) modulate mucosal inflammatory responses in vitro and in vivo. Methods: The human intestinal epithelial cell line T84 was used as the in vitro model for measuring the effects of HDL on the expression and secretion of tumor necrosis factor (TNF), interleukin-8 (IL-8), and intracellular adhesion molecule (ICAM). Nuclear factor-κB (NF-κB)-responsive promoter activity was studied by …
Lipid-free apolipoprotein (apo) A-I is converted into alpha-migrating high density lipoproteins by lipoprotein-depleted plasma of normolipidemic donors and apo A-I-deficient patients but not of Tangier disease patients
Plasma of patients with Tangier disease (TD) is devoid of alpha-LpA-I (apolipoprotein A-I-containing lipoprotein), which in normolipidemic plasma constitutes the majority of high density lipoprotein (HDL). The residual amounts of apolipoprotein A-I (apo A-I) in TD plasma have electrophoretic prebeta1-LpA-I mobility. We have previously demonstrated that TD plasma does not convert prebeta1-LpA-I into alpha-LpA-I. In this study we found that plasmas of normolipidemic controls, apo A-I-deficient patients and patients with fish-eye disease, but not plasmas of six TD patients, convert biotinylated lipid-free apo A-I into alpha-LpA-I. Supplementation of plasma with free oleic acid or fatty acid fr…
Treat-to-target versus dose-adapted statin treatment of cholesterol to reduce cardiovascular risk
Clinical guidelines should be based on the best available evidence and are of great importance for patient care and disease prevention. In this respect, the 2013 American College of Cardiology/American Heart Association report is highly appreciated and well-recognized. The report included critical questions concerning hypercholesterolaemia, but its translation into a clinical guideline initiated intense debate worldwide because of the recommendation to switch from a treat-to-target approach for low-density-lipoprotein-cholesterol to a statin dose-based strategy.