0000000000300427

AUTHOR

Stephan Six

Functioning of DcuC as the C 4 -Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli

ABSTRACT The dcuC gene of Escherichia coli encodes an alternative C 4 -dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a…

research product

Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.

In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are…

research product

Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct)

The nucleotide sequences of two Escherichia coli genes, dcuA and dcuB (formerly designated genA and genF), have been shown to encode highly homologous products, M(r) 45,751 and 47,935 (434 and 446 amino acid residues) with 36% sequence identity (63% similarity). These proteins have a high proportion (approximately 61%) of hydrophobic residues and are probably members of a new group of integral inner membrane proteins. The locations of the dcu genes, one upstream of the aspartase gene (dcuA-aspA) and the other downstream of the anaerobic fumarase gene (fumB-dcuB), suggested that they may function in the anaerobic transport of C4-dicarboxylic acids. Growth tests and transport studies with mut…

research product