0000000000300507
AUTHOR
Michel Mench
Pretreatment of trace element-enriched biomasses grown on phytomanaged soils for bioethanol production
Abstract Phytotechnologies are a set of sustainable, ecological options notably for alleviating pollutant linkages induced by contaminated soils. However, concerns exist regarding the processing of trace elements (TE)-enriched biomass and the fate of TEs in the end-products. The fractionation of phytoremediation TE-enriched non-woody lignocellulosic (tobacco) and woody (birch, willow) phytoremediation-borne biomasses was studied using ethanol organosolv, soda and dilute acid pretreatments. TE distribution in the process fractions (pulp, liquid effluents and lignin) was further examined. In dilute acid conditions, a wood pretreatment performed at 170 °C in the presence of 2% w/w of sulfuric …
Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin
International audience; Knowledge on physiological mechanisms and plant metabolism can be used to enhance metal uptake. The capacity to uptake metals of transgenic tobaccos overexpressing ferritin in plastids (P6) or in cytoplasm (C5) and a control tobacco (A) is assessed in three polluted soils from the same soil series, with a similar Cd content, but displaying pH from 5.8 to 7 (8b2, 8b3, S11). Differences in dry leave weight were not significant between the three tobaccos growing on each soil. Iron concentration in ferritin overexpression either in P6 or in C5 tobaccos increased only on the S11 soil, which had a soil pH 7, in comparison to A tobacco. In both 8b2 and 8b3 soils at pH lower…