0000000000300638
AUTHOR
Virginia Giorno
A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation
We consider a time-non-homogeneous double-ended queue subject to catastrophes and repairs. The catastrophes occur according to a non-homogeneous Poisson process and lead the system into a state of failure. Instantaneously, the system is put under repair, such that repair time is governed by a time-varying intensity function. We analyze the transient and the asymptotic behavior of the queueing system. Moreover, we derive a heavy-traffic approximation that allows approximating the state of the systems by a time-non-homogeneous Wiener process subject to jumps to a spurious state (due to catastrophes) and random returns to the zero state (due to repairs). Special attention is devoted to the cas…
M/M/1 queue in two alternating environments and its heavy traffic approximation
We investigate an M/M/1 queue operating in two switching environments, where the switch is governed by a two-state time-homogeneous Markov chain. This model allows to describe a system that is subject to regular operating phases alternating with anomalous working phases or random repairing periods. We first obtain the steady-state distribution of the process in terms of a generalized mixture of two geometric distributions. In the special case when only one kind of switch is allowed, we analyze the transient distribution, and investigate the busy period problem. The analysis is also performed by means of a suitable heavy-traffic approximation which leads to a continuous random process. Its d…