0000000000301814
AUTHOR
Cardellini Carlo
Preliminary study on geogenic degassing through the big karstic aquifers of Greece
Non-volcanic degassing contributes to the C-cycle by providing on a global scale a significant amount of CO2 emitted through diffuse earth degassing processes (Kerrick et al 1995). Due to the elevated solubility of the CO2 in water, in the areas where high CO2 fluxes directly affect regional aquifers, most of it can be dissolved, transported and released by groundwaters. Therefore, quantification of this contribution to the atmosphere has a substantial implication for modeling the global carbon cycle. According to Chiodini et al. (2000), total dissolved inorganic carbon (TDIC) concentrations and δ13CTDIC values of groundwaters are useful tools to both quantify the geogenic degassing and dis…
Geochemistry of fluids and CO2 output in the southern Apennine (Italy): Preliminary results for cold and thermal waters
Fluid geochemistry and CO2 output in the southern Apennine (Italy): Preliminary results
Natural and anthropogenic impacts on Greek karst water quality
Fluid geochemistry and CO2 output in the southern Apennine (Italy): Preliminary results from the study of cold and thermal waters
Impact of geogenic degassing on C-isotopic composition of dissolved carbon in karst systems of Greece
The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al., 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tect…