0000000000302954
AUTHOR
I. K. Kozakov
Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent
Abstract The Tuvino-Mongolian Massif (TMM) was previously interpreted as a Precambrian block within the Central Asian Mobile Belt. According to this idea, it consists of tectonic slices composed of metamorphic rocks of pre-Mesoproterozoic basement that experienced two episodes of regional metamorphism, and Mesoproterozoic ‘cover rocks’ that were reworked together with the basement during high-grade metamorphism. Zircon U–Pb dating of granitoids from all metamorphic complexes demonstrates that the earliest metamorphic event occurred at 536±6 Ma, significantly later than the deposition of the cover rocks. Regional upper amphibolite-facies metamorphism, which affected all metasedimentary units…
NO EXCESSIVE CRUSTAL GROWTH IN THE CENTRAL ASIAN OROGENIC BELT: FURTHER EVIDENCE FROM FIELD RELATIONSHIPS AND ISOTOPIC DATA
Abstract We provide new field observations and isotopic data for key areas of the Central Asian Orogenic Belt (CAOB), reiterating our previous assessment that no excessive crustal growth occurred during its ca. 800 Ma long orogenic evolution. Many Precambrian blocks (microcontinents) identified in the belt are exotic and are most likely derived from the northern margin of Gondwana, including the Tarim craton. Ocean opening in the Palaeo-Asian Ocean, arc formation and accretionary processes began in the latest Mesoproterozoic along the southern margin of the Siberian craton and continued into the Neoproterozoic, giving rise to tectono-metamorphic terranes distinct from the exotic microcontin…
Granulites and Palaeoproterozoic lower crust of the Baidarik Block, Central Asian Orogenic Belt of NW Mongolia
Abstract Mafic granulite xenoliths are hosted by garnetiferous charnockites in the Archaean to Palaeoproterozoic Bumbuger Complex of northwestern Mongolia, one of the exotic basement terranes in the Central Asian Orogenic Belt. These rocks crystallized at ca. 1850 Ma under granulite-facies conditions (800 ± 27 °C, 6.8 ± 0.6 kbar) in the lower crust and were partly retrogressed to amphibolite-facies during ascent to higher crustal levels as a result of strong deformation resulting in northwest-trending isoclinal folds. The mafic xenoliths are likely derived from gabbroic protoliths, and geochemical, Hf-in-zircon and Nd whole-rock isotopic data suggest these rocks to have originated from pare…
Early Neoproterozoic crustal growth and microcontinent formation of the north–central Central Asian Orogenic Belt: New geological, geochronological, and Nd–Hf isotopic data on the Mélange Zone within the Zavkhan terrane, western Mongolia
Abstract In this study, new geological, geochronological, geochemical, and Nd–Hf isotopic data are presented for the Melange Zone within the Zavkhan terrane, Mongolia, and the terrane structure, early Neoproterozoic continental crust growth, and microcontinent formation in the north–central part of the Central Asian Orogenic Belt (CAOB) are discussed. The Melange Zone separates high-grade complexes of the northwestern part of the Zavkhan terrane and unmetamorphosed Neoproterozoic Zavkhan Formation covered by Cryogenian–Cambrian shelf deposits of the southwestern part. Zone consist of a lower-grade association of basalts, basaltic andesites, rarely felsic volcanic rocks, trondhjemites of the…
EARLY NEOPROTEROZOIC CRUST FORMATON IN THE DZABKHAN MICROCONTINENT, CENTRAL ASIAN OROGENIC BELT
The Dzabkhan microcontinent was defined by [Mossakovsky et al., 1994] as a cratonic terrane with an early Precambrian basement that combines highgrade metamorphic complexes of the Songino, Dzabkhan, Otgon, Baidarik, Ider and Jargalant Blocks. However, early Precambrian ages have so far only been recognized in the Baidarik and Ider blocks [Kozakov et al., 2007, 2011; Kroner et al., 2015].
Zircon ages and Nd–Hf isotopes in UHT granulites of the Ider Complex: A cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia
Abstract The Ider Complex of the Tarbagatai Block in northwestern Mongolia is part of a Precambrian microcontinental terrane in the Central Asian Orogen Belt and has experienced a polymetamorphic tectono-metamorphic evolution. We have investigated an enderbitic gneiss, derived from a quartz diorite and a charnockite, derived from a leucogranite, and zircon SHRIMP data reveal late Archaean protolith ages of 2520–2546 Ma for these rocks. Metamorphic overgrowth on these zircons as well as newly-formed metamorphic zircons document a high-temperature metamorphic event (T = 930–950 °C) at about 1855–1860 Ma. Nd whole-rock isotopic systematics show these and other gneisses of the Ider Complex stra…
Coupled evolution of back-arc and island arc-like mafic crust in the late-Neoproterozoic Agardagh Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr-Nd-Pb isotope data
We report major-element, trace-element and isotopic data of volcanic rocks from the late-Neoproterozoic (570 Ma) Agardagh Tes-Chem ophiolite in Central Asia, south-west of Lake Baikal (50.5°N, 95°E). The majority of samples are high-alumina basalts and basaltic andesites having island-arc affinities. They were derived from an evolved parental magma (Mg#≥0.60, Cr~180 ppm, Ni~95 ppm) by predominantly clinopyroxene fractionation. The parental magma developed from a primary mantle melt by fractionation of about 12% of an olivine+spinel assemblage. The island-arc rocks have high abundances of incompatible trace elements (light rare-earth element abundances up to 100 times chondritic, chondrite-n…