0000000000303067

AUTHOR

Manami Fujita

Status of J-PARC E07: Systematic study of double strangeness nuclei with hybrid emulsion method

J-PARC E07 is the most complex emulsion experiment to date investigating double hypernuclei with a hybrid emulsion method. This experiment aims to detect 104 Ξ− stop events, ten times more events than the past experiments. Thus, an unequivocal identification of several new double hypernuclei is expected. The beam exposure has been completed at the K1.8 beam line of the J-PARC hadron facility in June 2017. The photographic development of all emulsion sheets has also been completed in February 2018. The emulsion sheets are presently being analyzed with dedicated optical microscopes. Current statistics is comparable to that of E373 and so far 10 events of 3-vertices topology have been detected…

research product

Observation of a Be double-Lambda hypernucleus in the J-PARC E07 experiment

A double-$\Lambda$ hypernucleus, ${}_{\Lambda\Lambda}\mathrm{Be}$, was observed by the J-PARC E07 collaboration in nuclear emulsions tagged by the $(K^{-},K^{+})$ reaction. This event was interpreted as a production and decay of $ {}_{\Lambda\Lambda}^{\;10}\mathrm{Be}$, ${}_{\Lambda\Lambda}^{\;11}\mathrm{Be}$, or ${}_{\Lambda\Lambda}^{\;12}\mathrm{Be}^{*}$ via $\Xi^{-}$ capture in ${}^{16}\mathrm{O}$. By assuming the capture in the atomic 3D state, the binding energy of two $\Lambda$ hyperons$\,$($B_{\Lambda\Lambda}$) of these double-$\Lambda$ hypernuclei are obtained to be $15.05 \pm 0.11\,\mathrm{MeV}$, $19.07 \pm 0.11\,\mathrm{MeV}$, and $13.68 \pm 0.11\,\mathrm{MeV}$, respectively. Base…

research product

Ground-state binding energy of HΛ4 from high-resolution decay-pion spectroscopy

Abstract A systematic study on the Λ ground state binding energy of hyperhydrogen H Λ 4 measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two indepen…

research product

Status of the J-PARC E07, Systematic Study of Double Strangeness Nuclei with the Hybrid Emulsion Method

The current status of the J-PARC E07 experiment and two typical events, a _ΛΛBe hypernuclear event named “MINO” and \(_{\Xi }^{15}\text{C}\) hypernuclear event named “IBUKI”, are presented. J-PARC E07 is the most complex emulsion experiment so far to investigate double hypernuclei. The physics run at the K1.8 beam line in the J-PARC hadron facility and photographic development of all emulsion sheets have been completed. The emulsion sheets are presently being analyzed with dedicated optical microscopes. Current statistics are estimated to be about twice that of KEK-PS E373. Quantitative data on ΔB_ΛΛ of double Λ hypernucleus and \(B_{\Xi ^{ - }}\) of Ξ hypernucleus are being accumulated suc…

research product

J-PARC E07: Systematic Study of Double Strangeness System with Hybrid Emulsion Method

research product

OUP accepted manuscript

research product

Experimental investigations of the hypernucleus $_Λ^4$H

International audience; Negatively charged pions from two-body decays of stopped _Lambda^4H hypernuclei were studied in 2012 at the Mainz Microtron MAMI, Germany. The momenta of the decay-pions were measured with unprecedented precision by using high-resolution magnetic spectrometers. A challenge of the experiment was the tagging of kaons from associated K^+∧ production off a Be target at very forward angles. In the year 2014, this experiment was continued with a better control of the systematic uncertainties, with better suppression of coincident and random background, improved particle identification, and with higher luminosities. Another key point of the progress was the improvemen…

research product

Observation of Coulomb-Assisted Nuclear Bound State of Ξ−–N14 System

In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^{-} absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as Ξ^{-}+^{14}N→_{Λ}^{10}Be+_{Λ}^{5}He. For the binding energy of the Ξ^{-} hyperon in the Ξ^{-}-^{14}N system a value of 1.27±0.21  MeV was deduced. The energy level of Ξ^{-} is likely a nuclear 1p state which indicates a weak ΞN-ΛΛ coupling.

research product