0000000000303192

AUTHOR

Christopher S. Melhus

Physics Contributions Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources

Purpose: The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spa- tial locations not included in the radial dose function gL(r) and 2D anisotropy function F(r,θ) table entries for radial dis- tance r and polar angle θ. The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive gL(r) and F(r,θ) from the reported data; 2) to determine the minimum number of entries in gL(r) and F(r,θ) that allow reproduction of dose distributions with sufficient accuracy. Material and methods: Four high-energy photon-emitting brachytherapy sources were studied: 60Co model Co0.A86, 137Cs model CSM-3, 192Ir model I…

research product

MO-D-AUD B-08: Treatment Planning for Complex Brachytherapy Dose Distributions Using High-Z Shields and Conventional Software

Purpose: Certain brachytherapydose distributions, like for LDR prostate implants, are readily modeled by treatment planningsoftware using the superposition principle of individual seeds to replicate the total dose distribution. However, dose distributions for brachytherapy treatments using high‐Z shields are currently not well‐modeled using conventional software.Method and Materials:Dose distributions from complex brachytherapy plaques determined using Monte Carlo methods were used as input data, and included COMS‐based eye plaques using 125 I , 103 Pd , and 131 Cs ; 4–8cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy; and the 2 and 3cm diame…

research product

TH-C-AUD A-08: Evaluation of Electronic Equilibrium Conditions Near Brachytherapy Sources

Purpose: For high‐energy photon‐emitting brachytherapysources such as 60 Co , 137 Cs , 192 Ir , and 169 Yb , the main contribution of the systematic uncertainty in the dose distributions near the sources is understanding of electronic equilibrium and the contribution of β‐rays due to radioactive disintegration. Thus, it is important to study these effects in detail to accurately depict dose distributions near these brachytherapysources. This work studies the relative importance of β‐ray contributions to total dose (β + γ + x‐ray), and feasibility of using the approximation “collision kerma equals dose in electronic equilibrium conditions.” Method and Materials:Characteristics of kerma and d…

research product

Evaluation of methods of interpolation-extrapolation of g L (r) and F(r,θ) for high-energy brachytherapy sources

research product

Equivalent phantom sizes in Ir-192 source brachytherapy dosimetric studies

research product

Brachytherapy treatment planning for complex applicators based on the AAPM TG-43 dosimetry algorithm: Case studies and clinical impact

research product

Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO

Since publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1) and its 2007 supplement (TG-43U1S1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical purposes and are posted on the Brachytherapy Seed Registry managed jointly by the AAPM and the Imaging and Radiation Oncology Core Houston Quality Assurance Center (IROC Houston). Given increasingly closer interactions among physicists in North America and Europe, the AAPM and the Groupe Europeen de Curietherapie-European Society for Radiotherapy & Oncology (GEC…

research product

An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributionsa)

Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributi…

research product

Erratum: “Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO” [Med. Phys. Vol 44 (9), e297-e338 (2017)]

research product

Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

Purpose: The region of electronic disequilibrium near photon-emitting brachytherapysources of high-energy radionuclides ( C 60 o , C 137 s , I 192 r , and Y 169 b ) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPEMonte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to sourcephotons, x rays, and bremsstrahlung; source β − , Auger electrons, and internal conversionelectrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electrondose contribution t…

research product

TH-C-AUD A-07: Evaluation of the Correction Factor Due to the Lack of Full Scatter Conditions in Cs-137 and Ir-192 Brachytherapy Dosimetric Studies

Purpose: Use of a finite phantom to derive dose rate distributions around brachytherapysources implies a lack of backscattering material near the phantom periphery. Conventional planning algorithms and newly‐developed 3D correction algorithms are based on physics data under full scatter conditions. Presently, most published Monte Carlodosimetric studies have been obtained using either a spherical phantom (15cm in radius) or a cylinder phantom (40×40cm2). The study objective was to derive a simple relationship to correlate the radial dose function, g(r), obtained for each one of these phantoms to that obtained for an unbounded phantom. Method and Materials: Assuming bare point sources of 137…

research product