0000000000303196
AUTHOR
J. Carlos Gonzalez-hidalgo
Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale
Abstract The classic approach defines an extreme event as a rare event identified by magnitude–frequency analysis and quantified by its deviation from a central value. They are key to understand geomorphological dynamics, since they are responsible for a considerable amount of work and “time compression”. Time compression means that most of the geomorphic work (particularly sediment transport) is produced in very short temporal intervals (i.e. in few events). Moreover, it is well known from magnitude–frequency analyses that events not necessarily extreme by magnitude could be responsible for a large amount of geomorphic work. To analyse the time compression of geomorphological processes, a …
A regional analysis of the effects of largest events on soil erosion
A large amount of geomorphic work is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The classic approach defines extreme events by their magnitude and they are quantified by certain deviation from a central value. Alternatively, we define extreme events as the largest events sorted by rank, whatever their absolute magnitude. In this case, events with equal rank from two different sites can be responsible for different magnitudes of geomorphic work, e.g., the amount of erosion. The new approach applied to soil erosion is that, whatever the magnitude of soil eroded, erosion is a time compressed process and the percentag…