0000000000303252
AUTHOR
O. Knuuttila
An isomeric 19+ state of the $$\pi h_{{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}}^2 i_{1{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} vg_{{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}} (j^{ - 2} )_{0^ + }$$ configuration in 85 210 At125 and the question of isospin dependence in the two-particle core polarization
Usingα-particles of energies 35–51 MeV and in-beam conversion electron andγ-spectroscopy techniques, a 4.0±1.7 μs core-excited 19+ isomeric state in210At with ag-factor of 0.737±0.025 has been observed at an excitation energy of 4027.7 keV. The 19+ state is suggested to have the $$\pi h_{{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}}^2 i_{1{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} vg_{{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}} (j^{ - 2} )_{0^ + }$$ configuration with maximum alignment of the angular momenta. The total two-particle core polarization due to theh 9/2 andi 13/2 protons and theg 9/2 n…
On the yrast two proton-two neutron hole states in208Po
High-spin levels in208Po, populated in the208Pb(α,4n)-reaction, were studied usingα-particles in the energy region 41–51 MeV. The energies of levels above the 6+ level have an uncertainty of about 10 keV due to the fact that the 8+→6+ transition has not been observed so far, but this transition has previously been established to be converted neither in theK-shell nor in theL-shells. It was found that the yrast cascade ofγ-rays from a 19+ level at 5896+e keV feeds levels of lower spin which all can be explained as originating from two proton-two neutron hole configurations. In the higher part of the cascade it is mainly the neutron holes which change their configuration, while the lower part…