0000000000303372

AUTHOR

Natividad Gálvez

Langmuir monolayers and Langmuir–Blodgett films of ferritin prepared by using a surfactant mixture of eicosylamine (EA) and methyl stearate (SME)

Abstract Magnetic Langmuir–Blodgett films of ferritin have been prepared by using the adsorption properties of a 1/4 mixed monolayer of eicosylamine (EA) and methyl stearate (SME). BAM images show that a more homogeneous distribution of ferritin at the air–water interface is achieved by using this mixture of surfactants instead of the DODA/SME mixed matrix of a previous work. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films. Infrared and UV–Vis spectroscopies indicate that ferritin molecules are incorporated within the LB films. Furthermore, UV–Vis spectroscopy measurements reveal that the amount of ferritin incorporated into these LB film h…

research product

Magnetic Langmuir–Blodgett films of ferritin with different iron loadings

Abstract Magnetic Langmuir–Blodgett multilayers of two ferritin molecules 1 and 2 , containing, respectively, 4220 and 3062 Fe atoms have been prepared by using the adsorption properties of a 6/1 mixed monolayer of dioctadecyldimethylammonium bromide (DODABr) and methyl stearate (SME). Transfer ratios close to unity were reached giving rise to LB films with a strong red colour. Infrared and UV–vis spectroscopy indicates that ferritin molecules are incorporated within the LB films. Magnetic measurements show that the superparamagnetic properties of these molecules are preserved. Thus, a marked hysteresis loop of magnetisation is obtained for LB films of 1 and 2 with a coercive field of 3400 …

research product

Electrochromic polyoxometalate material as a sensor of bacterial activity

L. fermentum, a bacterium of human microbiota, acts as an electron donor to the electrochromic [P2MoVI18O62]6. Since, the reductive capacity of L. fermentum correlates with its metabolic activity, the reaction with [P2MoVI18O62]6- affords a means of evaluating its activity. Following this logic, we have concluded that vancomycin severely affects the activity of L. fermentum whereas omeprazole does not.

research product

Permanent magnetism in apoferritin-encapsulated Pd nanoparticles

Pd nanoparticles have been prepared within the apoferritin cavity. X-Ray powder diffraction, transmission electronic microscopy and magnetization measurements have been used for characterizing the nanoparticles. The nanoparticles exhibit permanent magnetism at room temperature.

research product

Structural and magnetic characterization of Pd nanoparticles encapsulated in apoferritin

Pd nanoparticles exhibiting permanent magnetism at room temperature have been prepared within the apoferritin cavity. Pd nanoparticles in air and under an inert atmosphere were synthesized to study the influence of the aerobic and anaerobic conditions in the final magnetic properties. The surface of nanoparticles as well as the type of crystalline phase could determine the magnetic properties. X-ray powder diffraction, including Debye-function analysis, transmission electronic microscopy, and magnetization measurements have been used for characterizing the nanoparticles.

research product

Magnetic–fluorescent Langmuir–Blodgett films of fluorophore-labeled ferritin nanoparticles

Abstract We have covalently coupled fluorophore 4-(2-hydroxyethoxy)-7-nitro-2,1,3-benzoxadiazole (NBD) to the external ferritin shell through lysine residues. An increase in the luminescence quantum yield of the fluorescent ferritin particles and a blue shift in its emission peak compared to individual fluorophore were observed. The study of the particles by transmission electron microscopy showed that the native iron core ferritin is intact and that no degradation occurs during chemical functionalization of the protein shell. The NBD-labeled ferritin particles are water soluble, which allowed their controlled deposition by the Langmuir–Blodgett (LB) technique. Superparamagnetic and fluores…

research product