0000000000303382
AUTHOR
Kris Thielemans
Abstract CT020: MERIT: introducing individualized cancer vaccines for the treatment of TNBC - a phase I trial
Abstract The majority of metastatic cancers remain incurable since the current methods of treatment often fail to target the heterogeneous nature of each individual patient's tumor. Personalized approaches targeting each individual patient's tumor may therefore bring significant improvements. The Mutanome Engineered RNA Immuno-Therapy (MERIT) consortium will clinically validate a pioneering RNA-based immunotherapy concept for the treatment of triple negative breast cancer (TNBC) by targeting shared tumor antigens and individual neo-antigens in TNBC patients. MERIT combines two personalized treatment concepts: (i) treatment with vaccines containing “off-the-shelf” mRNAs selected from a pre-s…
Monitoring of anti-vaccine CD4 T cell frequencies in melanoma patients vaccinated with a MAGE-3 protein.
Abstract Quantitative evaluation of T cell responses of patients receiving antitumoral vaccination with a protein is difficult because of the large number of possible HLA-peptide combinations that could be targeted by the response. To evaluate the responses of patients vaccinated with protein MAGE-3, we have developed an approach that involves overnight stimulation of blood T cells with autologous dendritic cells loaded with the protein, sorting by flow cytometry of the T cells that produce IFN-γ, cloning of these cells, and evaluation of the number of T cell clones that secrete IFN-γ upon stimulation with the Ag. An important criterion is that T cell clones must recognize not only stimulat…
Abstract CT201: The Mutanome Engineered RNA Immuno-Therapy (MERIT) project
Abstract The Mutanome Engineered RNA Immuno-Therapy (MERIT) consortium will clinically and industrially validate a pioneering RNA-based immunotherapy concept that targets individual tumor antigens and tumor-specific mutations in triple negative breast cancer (TNBC) patients. This biomarker-guided, personalized therapy is a collaborative effort of five partners from academia and industry and is funded by the European Commission's FP7 and led by BioNTech AG. TNBC is an aggressive, molecularly heterogeneous cancer that accounts for 20% of all breast cancer patients. The 5-year survival rate is less than 80%. The molecular heterogeneity across TNBCs results in a lack of common targetable molecu…