Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method
Pure titania, zirconia, and mixed oxides (3—37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3—13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700 C. The mixed oxide with 37 mol.% of ZrO2 treated at 550 C shows a new single amorphous phase with a surface area of the…
Co-precipitation synthesis of neodymium-doped yttrium aluminium oxides nanopowders: Quantitative phase investigation as a function of joint isothermal treatment conditions and neodymium content
Abstract Neodymium-doped yttrium aluminium nanopowders with nominal Nd:Y:Al ratio equal to X:3–X:5 (where X = 0, 0.006, 0.012, 0.024, 0.048, 0.081, 0.096, 0.171, 0.192, 0.384, 0.540 and 0.720) were prepared by the co-precipitation method and subjected to five cumulative stages of isothermal treatment in the temperature range from 900 to 1050 °C. The phase evolution of the oxides were investigated quantitatively by the X-ray powder diffraction approach using the Rietveld method of analysis. An almost single phase cubic garnet structure was attained at temperatures as low as 900 °C for specimens with neodymium loading less than ca. 6 at.% with respect to total (Nd + Y) atoms. Isothermal treat…
Effects of Thermal Treatment on the Structure of Eu:YAG Nanopowder
Eu:YAG nanopowder precursors were obtained by co-precipitation of aluminium, yttrium and europium nitrates solution with ammonia. The hydroxides precursors were calcined at different temperatures from 900 to 1200°C as a function of holding time (1, 2 and 6 hours). The presence of Eu3+ ions in the matrix was confirmed by Energy Dispersive X-rays analysis. X-Ray Diffraction investigation by the Rietveld method shows that the sample treated at 900°C for 1 hour is essentially the garnet phase with the minor presence of hexagonal and monoclinic metastable phases. The Eu3+ ions are incorporated into the garnet phase, as is suggested by the lattice parameter value being larger than that in literat…
Effect of the dopant selection (Er, Eu, Nd or Ce) and its quantity on the formation of yttrium aluminum garnet nanopowders
Abstract Hydroxide precursors, synthesized using the co-precipitation method, were calcined for 1 h at the temperatures of 900, 1000 and 1100 °C, respectively, and heated directly to 1500 °C to produce various Y 3 Al 5 O 12 (YAG) nanopowders with different doping quantities of erbium, europium, neodymium and cerium. All samples were investigated using thermo-gravimetry (TG) and differential thermal analysis (DTA), field emission gun-scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). TG and DTA experiments were performed from room temperature up to 1500 °C; the weight loss curves combined with the presence of exo- and endo-thermal even…
Luminescence properties of neodymium-doped yttrium aluminium garnet obtained by the co-precipitation method combined with the mechanical process
Nanopowders of yttrium aluminium garnet Y3Al5O12 (YAG) doped with neodymium ions were obtained by the co-precipitation method from the reaction of aluminium and yttrium nitrate and neodymium oxide with ammonia. After washing and drying the hydroxide precursors were calcined at 500, 700, 800 and 900 °C for 1 hour and at 1000 °C for 3 hours. This product was treated by ball milling in a zirconia vial for 0.5, 1.5 and 10 h in order to achieve smaller nanoparticles. The structure, microstructure, morphology and optical properties were investigated by means of diffractometric, microscopic and spectroscopic techniques. The course of the amorphous-to-crystalline transformation was complete after c…
Co-precipitation synthesis of Nd:YAG nano-powders: the effect of Nd dopant addition with thermal treatment
Nanopowders of Yttrium Aluminium Garnet doped with neodymium ions were obtained by the co-precipitation method from the reaction of aluminium, yttrium and neodymium nitrate with ammonia. The amount of neodymium was selected in order to produce samples of nominal stoichiometry NdXY (3-X)Al5O12 (where X = 0.006, 0.012, 0.024, 0.048, 0.081, 0.096, 0.17, 0.19, 0.38, 0.54, and 0.72, respectively). After washing and drying, the hydroxide precursors were subjected to Thermo-Gravimetry and Differential Thermal Analysis experiments from room temperature up to 1500 °C, which showed the presence of exothermal events accompanying phase transformation phenomena. X-ray diffraction investigations conducte…