0000000000303682

AUTHOR

Neda Nasiri Moghadam

Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches

Simple Summary Most laboratory experiments on insects to date have been conducted using constant temperature settings. Even when the purpose of the study was to investigate effects of temperature, insects have mostly been kept at different but constant temperatures ignoring natural variation in temperature. Here we investigated effects of simple daily temperature fluctuation (22.5/27.5 °C and 20/30 °C) on some development characteristics in five species of fruit flies (Drosophila) originating from areas with different temperature profiles. We demonstrated how species of the same genus can show substantial differences when developing at fluctuating temperatures not always predictable by deve…

research product

Effects of photoperiod on life-history and thermal stress resistance traits across populations of Drosophila subobscura

Introduction Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. Materials and methods Here we studied changes in life‐history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark …

research product

Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity

Variations in stress resistance and adaptive plastic responses during ontogeny have rarely been addressed, despite the possibility that differences between life stages can affect species' range margins and thermal tolerance. Here, we assessed the thermal sensitivity and hardening capacity of Drosophila melanogaster across developmental stages from larval to the adult stage. We observed strong differences between life stages in heat resistance, with adults being most heat resistant followed by puparia , pupae and larvae . The impact of heat hardening (1 h at 35°C) on heat resistance changed during ontogeny, with the highest positive effect of hardening observed in puparia and pupae and the …

research product

Quantitative genetics of temperature performance curves of Neurospora crassa

AbstractEarth’s temperature is increasing due to anthropogenic CO2emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism’s physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model systemNeuros…

research product

Data from: Heat hardening capacity in Drosophila melanogaster is life stage specific and juveniles show the highest plasticity

Variations in stress resistance and adaptive plastic responses during ontogeny have rarely been addressed, despite the possibility that differences between life stages can affect species' range margins and thermal tolerance. Here, we assessed the thermal sensitivity and hardening capacity of Drosophila melanogaster across developmental stages from larval to the adult stage. We observed strong differences between life stages in heat resistance, with adults being most heat resistant followed by puparia, pupae and larvae. The impact of heat hardening (1 h at 35°C) on heat resistance changed during ontogeny, with the highest positive effect of hardening observed in puparia and pupae and the low…

research product