0000000000304086
AUTHOR
Konstantinos Efstathiou
Rotation Forms and Local Hamiltonian Monodromy
International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …
Integrable Hamiltonian systems with swallowtails
International audience; We consider two-degree-of-freedom integrable Hamiltonian systems with bifurcation diagrams containing swallowtail structures. The global properties of the action coordinates in such systems together with the parallel transport of the period lattice and corresponding quantum cells in the joint spectrum are described in detail. The relation to the concept of bidromy which was introduced in Sadovski´ı and Zhilinski´ı (2007 Ann. Phys. 322 164–200) is discussed.