VHb-siirtogeenin vaikutukset geenimuunnellun nieriän (Salvelinus alpinus) hapenkulutukseen ja kasvuun
Nieriä (Salvelinus alpinus) on arvostettu laji sekä urheilukalastuksessa että ruokakalana. Vähentyneiden populaatioiden ja viljelyssä havaittujen ongelmien takia sitä ei kuitenkaan Suomessa voida taloudellisesti hyödyntää parhaalla mahdollisella tavalla. Ilmastonmuutos voi hankaloittaa ennestään nieriän viljelyä, sillä se on kylmän veden laji. Tulevaisuudessa voi siirtogeenisten lajien käyttö ruokakalana olla mahdollista niiden uusien ominaisuuksien ja tehokkaamman viljelyn takia. Tässä tutkimuksessa selvitettiin miten bakteerihemoglobiinia (VHb) koodaava VHb-siirtogeeni vaikuttaa nieriän hapenkulutukseen ja kasvuun. Geenin vaikutuksia tutkittiin mittaamalla kalojen hapenkulutusta kolmessa …
Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulati…
Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform
Abstract The aquaculture industry is growing fast but facing two major challenges: a shortage of suitable locations for growth and the need to reduce environmental impacts. One solution for both these challenges is inland production through recirculating aquaculture systems (RAS). The RAS technique is rather new, and several practical issues need to be solved. In this study, an experimental platform, consisting of ten individual RAS units, was built for small-scale testing of different RAS designs and operation methods, and two preliminary experiments were conducted. In the first experiment, the capability of different chemical additions (sodium nitrite, ammonium chloride and/or cane sugar)…
The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems
Abstract Microbial biofilters control water quality and enable the overall function of recirculation aquaculture systems (RAS). Changes in environmental conditions can affect the abundance and interactions of the diverse microbial populations of the biofilter, affecting nitrification of harmful ammonium and thus fish health. Here, we examined the effect of different application frequencies (0, 1, 2 and 4 times per week) of a common disinfectant, peracetic acid (PAA, applied 1.1 mg l−1 twice per day), on biofilter microbial communities, focusing especially on nitrifying microbial groups and using a high throughput sequencing of 16S rRNA gene and quantitative PCR (qPCR). In addition, we measu…
The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems
Abstract The effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid particles, whereas moving bed bioreactors (MBBR) grind solids, possibly increasing solids and particle accumulation in the system. In this experiment, the effects of different combinations of fixed bed and moving bed bioreactors on water quality, solids removal, particle size distribution, fish health based on histopathological changes and nitrification efficiency were studied in laboratory scale recirculating aquaculture systems (RAS) with rainbow trout (Oncorhy…
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition during a one-y…
Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)
Abstract In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the …
Discharge management in fresh and brackish water RAS: Combined phosphorus removal by organic flocculants and nitrogen removal in woodchip reactors
The current study combined P and N removal using organic flocculant chemicals and woodchip bioreactors in both freshwater and brackish water (7 ppm) recirculating aquaculture systems (RAS). The use of carbon (C) containing flocculant chemicals in the process was hypothesized to further stimulate C-demanding N removal (denitrification) in bioreactors. The trial of combined P and N removal consisted of four treatments: freshwater and brackish water RAS with and without the addition of supernatant from flocculation process to the woodchip reactor. Duplicate woodchip reactors were used per treatment and the trial was run for six weeks. 56 % and 49 % of P was removed from fresh and brackish slud…
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Abstract Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition durin…