MHT-X: Offline Multiple Hypothesis Tracking with Algorithm X
An efficient and versatile implementation of offline multiple hypothesis tracking with Algorithm X for optimal association search was developed using Python. The code is intended for scientific applications that do not require online processing. Directed graph framework is used and multiple scans with progressively increasing time window width are used for edge construction for maximum likelihood trajectories. The current version of the code was developed for applications in multiphase hydrodynamics, e.g. bubble and particle tracking, and is capable of resolving object motion, merges and splits. Feasible object associations and trajectory graph edge likelihoods are determined using weak mas…