0000000000305298

AUTHOR

Simone Renner

showing 5 related works from this author

Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development.

2015

Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of n…

Central Nervous SystemEmbryologyanimal structuresNeurogenesisGenes InsectBiologyCell fate determinationNeuroblastAnimalsDrosophila ProteinsProtein IsoformsHox geneUltrabithoraxGeneticsHomeodomain ProteinsAlternative splicingGenes HomeoboxGene Expression Regulation DevelopmentalCell biologyAlternative Splicingembryonic structuresRNA splicingDrosophilaNeural developmentDrosophila ProteinDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in theDrosophilaembryonic CNS

2007

Glial cells in the Drosophila embryonic nervous system can be monitored with the marker Reversed-polarity (Repo), whereas neurons lack Repo and express the RNA-binding protein ELAV (Embryonic Lethal, Abnormal Vision). Since the first description of the ELAV protein distribution in 1991 (Robinow and White), it is believed that ELAV is an exclusive neuronal and postmitotic marker. Looking at ELAV expression, we unexpectedly observed that, in addition to neurons, ELAV is transiently expressed in embryonic glial cells. Furthermore, it is transiently present in the proliferating longitudinal glioblast, and it is transcribed in embryonic neuroblasts. Likewise, elav-Gal4 lines, which are generally…

Central Nervous SystemNervous systemGenes InsectBiologyAnimals Genetically ModifiedGlioblastNeuroblastGenes ReportermedicineAnimalsDrosophila ProteinsEmbryonic Stem CellsNeuronsRegulation of gene expressionGene Expression Regulation DevelopmentalEmbryoAnatomyEmbryonic stem cellPhenotypeNeural stem cellCell biologyPhenotypemedicine.anatomical_structureELAV Proteinsnervous systemMutationDrosophilaNeurogliaDevelopmental BiologyDevelopmental Dynamics
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryo…

2008

The generation of morphological diversity among segmental units of the nervous system is crucial for correct matching of neurons with their targets and for formation of functional neuromuscular networks. However, the mechanisms leading to segment diversity remain largely unknown. We report here that the Hox genes Ultrabithorax (Ubx) and Antennapedia (Antp) regulate segment-specific survival of differentiated motoneurons in the ventral nerve cord of Drosophilaembryos. We show that Ubx is required to activate segment-specific apoptosis in these cells, and that their survival depends on Antp. Expression of the Ubx protein is strongly upregulated in the motoneurons shortly before they undergo a…

Nervous systemCentral Nervous SystemProgrammed cell deathanimal structuresEmbryo NonmammalianApoptosisBiologyAntennapediaDownregulation and upregulationmedicineAnimalsDrosophila ProteinsHox geneMolecular BiologyUltrabithoraxGeneticsHomeodomain ProteinsGene Expression Regulation DevelopmentalCell DifferentiationEmbryonic stem cellCell biologymedicine.anatomical_structureVentral nerve cordembryonic structuresAntennapedia Homeodomain ProteinDrosophilaDevelopmental BiologyTranscription FactorsDevelopment (Cambridge, England)
researchProduct

Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function

2009

AbstractDuring development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t. Here we show that (i) this function of CycE is independent of its role in cell cycle regulation and (ii) the two functions are m…

ProsperoNerve Tissue ProteinsStem cellsCyclinEBiologyCell fate determinationNeuroblastNeuroblastsCyclin EAsymmetric cell divisionAnimalsDrosophila ProteinsCell LineageMolecular BiologyNeural cellCell ProliferationSequence DeletionNeuronsCell fate determinationCell CycleNuclear ProteinsCell DifferentiationCell BiologyCell cycleNeural stem cellUp-RegulationCell biologyProtein TransportDrosophila melanogasternervous systemDrosophilaCNSStem cellGanglion mother cellBiomarkersProtein BindingTranscription FactorsDevelopmental BiologyDevelopmental Biology
researchProduct