0000000000305739

AUTHOR

Marek Ploszajczak

Asymptotic normalization coefficients and continuum coupling in mirror nuclei

Background: An asymptotic normalization coefficient (ANC) characterizes the asymptotic form of a one-nucleon overlap integral required for description of nucleon-removal reactions. Purpose: We investigate the impact of the particle continuum on proton and neutron ANCs for mirror systems from $p$- and $sd$-shell regions. Method: We use the real-energy and complex-energy continuum shell model approaches. Results: We studied the general structure of the single-particle ANCs as a function of the binding energy and orbital angular momentum. We computed ANCs in mirror nuclei for different physical situations, including capture reactions to weakly-bound and unbound states. Conclusions: We demonstr…

research product

Charge radii and neutron correlations in helium halo Nuclei

Within the complex-energy configuration interaction framework, we study correlations of valence neutrons to explain the behavior of charge radii in the neutron halo nuclei $^{6,8}$He. We find that the experimentally observed decrease of the charge radius between $^6$He and $^8$He is caused by a subtle interplay between three effects: dineutron correlations, a spin-orbit contribution to the charge radius, and a core swelling effect. We demonstrate that two-neutron angular correlations in the $2^+_1$ resonance of $^6$He differ markedly from the ground-state correlations in $^{6,8}$He.

research product

White paper: from bound states to the continuum

This white paper reports on the discussions of the 2018 Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory’. One of the biggest and most important frontiers in nuclear theory today is to construct better and stronger bridges between bound state calculations and calculations in the continuum, especially scattering and reaction theory, as well as teasing out the influence of the continuum on states near threshold. This is particularly challenging as many-body structure calculations typically use a bound state basis, while reaction calculations more commonly utili…

research product

Isospin mixing and the continuum coupling in weakly bound nuclei

The isospin breaking effects due to the Coulomb interaction in weakly-bound nuclei are studied using the Gamow Shell Model, a complex-energy configuration interaction approach which simultaneously takes into account many-body correlations between valence nucleons and continuum effects. We investigate the near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an isomultiplet. Illustrative calculations are carried out for the T=1 isobaric triplet. By using a shell-model Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly bound or unbound systems the structure of isobaric analog states v…

research product