0000000000305851

AUTHOR

T. Sonley

showing 2 related works from this author

SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy

2021

The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for t…

Milky WayAstrophysics::High Energy Astrophysical PhenomenasatelliteFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)Astronomi astrofysik och kosmologistar0103 physical sciencessupernova[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and Cosmology010306 general physicssupernova neutrinoscaptureAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsWarning systemSupernova Early Warning SystembackgroundAstronomysensitivityGalaxySupernovaelectromagneticNeutrino detectorsupernova neutrinos; multi-messenger astronomy; particle astrophysicsneutrino: burstgalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenamulti-messenger astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]particle astrophysics
researchProduct

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct