0000000000305871

AUTHOR

Cecilia Lunardini

SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy

The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for t…

research product

Physics at a future Neutrino Factory and super-beam facility

The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …

research product

Solar neutrinos as probes of neutrino–matter interactions

Data from solar neutrino and KamLAND experiments have led to a discovery of nonzero neutrino masses. Here we investigate what these data can tell us about neutrino interactions with matter, including the poorly constrained flavor-changing nu_e-nu_tau interactions. We give examples of the interaction parameters that are excluded by the solar/KamLAND data and are beyond the reach of other experiments. We also demonstrate that flavor-changing interactions, at the allowed level, may profoundly modify the conversion probability for neutrinos of energy <~ 6 MeV and the values of the mass parameter inferred from the data. The implications for future experiments are discussed.

research product