0000000000305959

AUTHOR

Antonio F. Patti

showing 2 related works from this author

DFT insights into the oxygen-assisted selective oxidation of benzyl alcohol on manganese dioxide catalysts

2020

Abstract The reactivity pattern of the MnO2 catalyst in the selective aerobic oxidation of benzyl alcohol is assessed by density functional theory (DFT) analysis of adsorption energies and activation barriers on a model Mn4O8 cluster. DFT calculations predict high reactivity of defective Mn(IV) sites ruling a surface redox mechanism, L-H type, involving gas-phase oxygen. Bare and promoted (i.e., CeOx and FeOx) MnOx materials with high surface exposure of Mn(IV) sites were synthesized to assess kinetic and mechanistic issues of the selective aerobic oxidation of benzyl alcohol on real catalysts (T, 333–363 K). According to DFT predictions, the experimental study shows: i) comparable activity…

inorganic chemicalsInorganic chemistrychemistry.chemical_elementAlcoholManganese010402 general chemistry01 natural sciencesRedoxCatalysisInorganic Chemistrychemistry.chemical_compoundAdsorptionBenzyl alcoholMaterials ChemistryReactivity (chemistry)Physical and Theoretical ChemistryReaction mechanismBenzoic acidDFT analysi010405 organic chemistryActive siteorganic chemicalsMnO2 catalyst0104 chemical scienceschemistrySettore CHIM/03 - Chimica Generale E InorganicaBenzyl alcoholActive sites; Benzyl alcohol; DFT analysis; MnO; 2; catalyst; Reaction mechanism; Selective oxidationSelective oxidation
researchProduct

O-Alkylation of a lignite humic acid by phase-transfer catalysis

2006

A mild phase-transfer catalytic reaction has been conducted to O-alkylate the acidic functions of a lignite humic acid (HA), using tetrabutylammonium hydroxide as the phase-transfer catalyst. The HA acidic functional groups were made to react, in tetrahydrofuran, by nucleophilic substitution with several alkyl halides-methyl iodide, and ethyl, propyl, and butyl, and benzyl bromide. The occurrence of the O-alkylation reaction was assessed by elemental analysis and 1H NMR, CPMAS 13C NMR, and FTIR spectroscopy. Bonding of alkyl groups increased the carbon and hydrogen content and the H/C ratios of all the humic reaction products. Increased nitrogen in the reaction products suggested incomplete…

chemistry.chemical_classificationSettore AGR/13 - Chimica AgrariaEtherAlkylationCarbon-13 NMRBiochemistryAnalytical ChemistryCatalysischemistry.chemical_compoundchemistryProton NMRNucleophilic substitutionHumic acidOrganic chemistrylipids (amino acids peptides and proteins)Humic substances O-Alkylation Phase-transfer catalysis Tetrabutylammonium hydroxide NMR FTIRAlkylAnalytical and Bioanalytical Chemistry
researchProduct