0000000000306555
AUTHOR
Salim Sharopov
Inhibition of different GABA transporter systems is required to attenuate epileptiform activity in the CA3 region of the immature rat hippocampus
GABA transporters (GATs) are an essential element of the GABAergic system, which regulate excitability in the central nervous system and are thus used as targets for anticonvulsive therapy. However, in the immature nervous system the functions of the GABAergic system and the expression profile of GATs are distinct from the adult situation, obscuring to predict how different GAT isoforms influence epileptiform activity. Therefore we analyzed the effects of subtype specific GAT inhibitors on repetitive epileptiform discharges using field potential and whole-cell patch-clamp recordings in the CA3 region of hippocampal slices of immature (postnatal days 4-7) rats. These experiments revealed tha…
Phasic GABAA-receptor activation is required to suppress epileptiform activity in the CA3 region of the immature rat hippocampus
Summary Purpose: Despite the consistent observation that γ-aminobutyric acid A (GABAA) receptors mediate excitatory responses at perinatal stages, the role of the GABAergic system in the generation of neonatal epileptiform activity remains controversial. Therefore, we analyzed whether tonic and phasic GABAergic transmission had differential effects on neuronal excitability during early development. Methods: We performed whole cell patch-clamp and field potential recordings in the CA3 region of hippocampal slices from immature (postnatal day 4–7) rats to analyze the effect of specific antagonists and modulators of tonic and phasic GABAergic components on neuronal excitability. Key Findings…
Allopregnanolone augments epileptiform activity of an in-vitro mouse hippocampal preparation in the first postnatal week.
Abstract In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4–7) using field potential recordings. These in-vitro experiments revealed that 0.5 μmol/L allopregnanolone had no …
Author response: Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex
Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus
While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4-7) rat using field potential recordings. Bath application of 100 μM taurine or 10 μM glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μM 4-aminopyridine in low Mg(2+) solution. This proconvulsive effect was prevented by 3 μM strychnine or after incubation with the loop diuretic bumetanide (10 …
Dopaminergic modulation of low-Mg2+-induced epileptiform activity in the intact hippocampus of the newborn mouse in vitro
To investigate whether epileptiform activity in the immature brain is modulated by dopamine, we examined the effects of dopaminergic agonists and antagonists in an intact in vitro preparation of the isolated corticohippocampal formation of immature (postnatal days 3 and 4) C57/Bl6 mice using field potential recordings from CA3. Epileptiform discharges were induced by a reduction of the extracellular Mg(2+) concentration to 0.2 mM. These experiments revealed that low concentrations of dopamine ( 3 μM dopamine enhanced epileptiform activity. The D1-agonist SKF38393 (10 μM) had a strong proconvulsive effect, and the D2-like agonist quinpirole (10 μM) mediated a weak anticonvulsive effect. The …
Gadd45α modulates aversive learning through post‐transcriptional regulation of memory‐related mRNA s
Abstract Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Ga…
Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex
Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptos…