0000000000306633

AUTHOR

Jörg Schmiedmayer

showing 4 related works from this author

A simple quantum gate with atom chips

2005

We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips.

PhysicsCondensed Matter::Quantum GasesQuantum Physicschemistry.chemical_elementFOS: Physical sciencesInstitut für Physik und AstronomieAtomic and Molecular Physics and OpticsTwo degrees of freedomRubidiumComputer Science::Hardware ArchitectureQuantum gateComputer Science::Emerging TechnologieschemistrySimple (abstract algebra)AtomHardware_INTEGRATEDCIRCUITSPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Realization (systems)Phase gate
researchProduct

Simulating a quantum commensurate-incommensurate phase transition using two Raman-coupled one-dimensional condensates

2020

We study a transition between a homogeneous and an inhomogeneous phase in a system of one-dimensional, Raman tunnel-coupled Bose gases. The homogeneous phase shows a flat density and phase profile, whereas the inhomogeneous ground state is characterized by periodic density ripples, and a soliton staircase in the phase difference. We show that under experimentally viable conditions the transition can be tuned by the wavevector difference $Q$ of the Raman beams and can be described by the Pokrovsky-Talapov model for the relative phase between the two condensates. Local imaging available in atom chip experiments allows to observe the soliton lattice directly, while modulation spectroscopy can …

PhysicsMesoscopic physicsPhase transitionCondensed matter physicsPhononFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesQuantum Gases (cond-mat.quant-gas)Ultracold atom0103 physical sciencesSoliton010306 general physics0210 nano-technologyTranslational symmetryWave functionCondensed Matter - Quantum GasesQuantum fluctuation
researchProduct

Theoretical analysis of a realistic atom-chip quantum gate

2006

9 pages, 5 color figures; International audience; We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double-well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 m…

PhysicsTRAPPED ATOMSQuantum decoherenceSURFACESInstitut für Physik und Astronomie01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNOISEQuantum circuitQuantum gate[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Controlled NOT gateQubitQuantum mechanics0103 physical sciencesAtomPhysics::Atomic PhysicsAtomic physics010306 general physicsNEUTRAL ATOMSQuantumENTANGLEMENTQuantum computer
researchProduct

Mixed internal-external state approach for quantum computation with neutral atoms on atom chips

2006

We present a realistic proposal for the storage and processing of quantum information with cold Rb atoms on atom chips. The qubit states are stored in hyperfine atomic levels with long coherence time, and two-qubit quantum phase gates are realized using the motional states of the atoms. Two-photon Raman transitions are used to transfer the qubit information from the internal to the external degree of freedom. The quantum phase gate is realized in a double-well potential created by slowly varying dc currents in the atom chip wires. Using realistic values for all experimental parameters (currents, magnetic fields, ...) we obtain high gate fidelities (above 99.9%) in short operation times (~ 1…

PhysicsQuantum technologyOpen quantum systemComputer Science::Emerging TechnologiesQubitPrincipal quantum numberQuantum simulatorPhysics::Atomic PhysicsQuantum informationAtomic physicsQuantum numberQuantum computer
researchProduct